首页 > 网管 > 服务器 > 正文

[ext4]12分配机制-关键的数据结构

2020-05-27 13:20:33
字体:
来源:转载
供稿:网友

   在块分配机制中,涉及到几个主要的数据结构。

  通过ext4_allocation_request描述块请求,然后基于块查找结果即上层需求来决定是否执行块分配操作。

  在分配过程中,为了更好执行分配,记录一些信息,需要对分配行为进行描述,就有结构体ext4_allocation_contex。

  在搜寻可用空间过程中,是有可能使用预分配空间的,因此还需要有能够描述预分配空间大小等属性的描述符ext4_prealloc_space。

  下面,对各个关键结构体进行详细的分析。

  1. 块请求描述符ext4_allocation_request

  块分配请求属性,有请求描述符ext4_allocation_request来描述:

  structext4_allocation_request {

  /* target inode for block wereallocating */

  struct inode *inode;

  /* how many blocks we want to allocate*/

  unsigned int len;

  /* logical block in target inode */

  ext4_lblk_t logical;

  /* the closest logical allocated blockto the left */

  ext4_lblk_t lleft;

  /* the closest logical allocated blockto the right */

  ext4_lblk_t lright;

  /* phys. target (a hint) */

  ext4_fsblk_t goal;

  /* phys. block for the closest logicalallocated block to the left */

  ext4_fsblk_t pleft;

  /* phys. block for the closest logicalallocated block to the right */

  ext4_fsblk_t pright;

  /* flags. see above EXT4_MB_HINT_* */

  unsigned int flags;

  };

  这个请求描述符结构体在ext4_ext_map_blocks()中初始化(注:ext4_ext_map_blocks()的作用是查找或分配指定的block块,并完成与缓存空间的映射)。

  具体上述信息也就一个成员变量goal值的我们分析一下,goal记录是物理块号,其隐含含义比较重要:goal虽然只是记录物理块号,但是这个物理块号的选择可以很大程度的是文件保证locality特性及其物理地址连续性。

  goal是由函数ext4_ext_find_goal()来定义:

  static ext4_fsblk_t ext4_ext_find_goal(struct inode*inode,

  struct ext4_ext_path *path,

  ext4_lblk_t block)

  {

  if(path) {

  intdepth = path->p_depth;

  structext4_extent *ex;

  /*

  * Try to predict block placement assuming thatwe are

  * filling in a file which will eventually be

  * non-sparse --- i.e., in the case of libbfdwriting

  * an ELF object sections out-of-order but in away

  * the eventually results in a contiguousobject or

  * executable file, or some database extendinga table

  * space file. However, this is actually somewhat

  * non-ideal if we are writing a sparse filesuch as

  * qemu or KVM writing a raw image file that isgoing

  * to stay fairly sparse, since it will end up

  * fragmenting the file systems free space. Maybe we

  * should have some hueristics or some way toallow

  * userspace to pass a hint to file system,

  * especially if the latter case turns out tobe

  * common.

  */

  ex= path[depth].p_ext;

  if(ex) {

  ext4_fsblk_text_pblk = ext4_ext_pblock(ex);

  ext4_lblk_text_block = le32_to_cpu(ex->ee_block);

  if(block > ext_block)

  returnext_pblk + (block - ext_block);

  else

  returnext_pblk - (ext_block - block);

  }

  /*it looks like index is empty;

  * try to find starting block from index itself*/

  if(path[depth].p_bh)

  returnpath[depth].p_bh->b_blocknr;

  }

  /*OK. use inodes group */

  returnext4_inode_to_goal_block(inode);

  }

  细细分析这段代码,如果从根目录到指定逻辑块的path存在,那么就需要根据path来计算目标物理块的地址。

  (1) Path的终点若是dataextent,则说明该path是从根到叶子的。当请求block号大于path叶子extent的起始逻辑块号ext_block (对应物理块号为pblk),其逻辑块的距离为(block-ext_block),为在最可能上保证对应物理地址的连续性;只需返回与pblk+(block-ext_block)物理块号最接近的空闲物理块即可;而对于请求block号小于extent的起始逻辑块号ext_block的情况,只需尽最可能以pblk-( ext_block -block)物理块号为目标寻找与其物理地址最接近的空闲物理块即可。因此,我们指定goal分别为pblk+(block-ext_block)和pblk-(block-ext_block)。

  (2) 而如果path存在,却没有叶子,那则么办,很简单,我们只需要将goal物理块号指定为最后一个的extent block对应的物理块号既可。

  (3) 还有一种情况,没有给出path。个人认为,这种场景即inode刚create的情况。有专门的ext4_inode_to_goal_block()来实现:

  ext4_fsblk_t ext4_inode_to_goal_block(struct inode*inode)

  {

  structext4_inode_info *ei = EXT4_I(inode);

  ext4_group_tblock_group;

  ext4_grpblk_tcolour;

  intflex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));

  ext4_fsblk_tbg_start;

  ext4_fsblk_tlast_block;

  block_group= ei->i_block_group;

  if(flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {

  /*

  * If there are at leastEXT4_FLEX_SIZE_DIR_ALLOC_SCHEME

  * block groups per flexgroup, reserve thefirst block

  * group for directories and special files. Regular

  * files will start at the second blockgroup. This

  * tends to speed up directory access andimproves

  * fsck times.

  */

  block_group&= ~(flex_size-1);

  if(S_ISREG(inode->i_mode))

  block_group++;

  }

  bg_start= ext4_group_first_block_no(inode->i_sb, block_group);

  last_block= ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

  /*

  * If we are doing delayed allocation, we dontneed take

  * colour into account.

  */

  if(test_opt(inode->i_sb, DELALLOC))

  returnbg_start;

  if(bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)

  colour= (current->pid % 16) *

  (EXT4_BLOCKS_PER_GROUP(inode->i_sb)/ 16);

  else

  colour= (current->pid % 16) * ((last_block - bg_start) / 16);

  returnbg_start + colour;

  }

  其思想是:如果flex_size至少有EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME个block groups,则定义inode所在flex_group的第二个block group的首个可用block为起始物理块号bg_block。

  当然,如果该flex_group的所有文件都以bg_block为goal的,肯定会产生竞争,所以增加color的作用,目的就是加入一个随机值,降低可能带来的竞争。

  因此,最后这种情况的goal会选择inode所在flex_group中某个随机值。

  【说明:如果flex_size只有不小于EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME,则才有可能将flex_group中第一个group分离出来,用于专门存放directories和一些特殊文件,普通文件从第二个group中分配,该特可以加速directory的访问及fsync效率。】

  2. 分配行为描述符ext4_allocation_contex

  在分配过程中,为了更好执行分配,记录一些信息,需要对分配行为进行描述,就有结构体ext4_allocation_contex:

  struct ext4_allocation_context{

  struct inode *ac_inode;

  struct super_block *ac_sb;

  /* original request */

  struct ext4_free_extent ac_o_ex;

  /* goal request (normalized ac_o_ex) */

  struct ext4_free_extent ac_g_ex;

  /* the best found extent */

  struct ext4_free_extent ac_b_ex;

  /* copy of the best found extent takenbefore preallocation efforts */

  struct ext4_free_extent ac_f_ex;

  __u16 ac_groups_scanned;

  __u16 ac_found;

  __u16 ac_tail;

  __u16 ac_buddy;

  __u16 ac_flags; /* allocation hints */

  __u8 ac_status;

  __u8 ac_criteria;

  __u8 ac_2order; /* if request is to allocate 2^N blocks and

  * N > 0, the field stores N, otherwise 0 */

  __u8 ac_op; /* operation, for history only */

  struct page *ac_bitmap_page;

  struct page *ac_buddy_page;

  struct ext4_prealloc_space *ac_pa;

  struct ext4_locality_group *ac_lg;

  };

  这个数据结构用来描述分配上下文的属性。基于结构体ext4_allocation_request,由函数ext4_mb_initialize_context()进行初始化。

  ext4_mb_initialize_context()主要工作: 利用请求描述符的信息初始化ac->ac_o_ex:申请的逻辑块号fe_logical、goal所在的group,goal的cluster号(暂时理解为物理块号);然后将ac_g_ex 赋值为ac_o_ex。

  ext4_mb_normalize_request()会对ext4_allocation_contex结构体进行normalization:

  1.计算file的大小size应该是i_size_read(ac->ac_inode)和(offset+请求长度)中的大值,其中offset是有指定block转化而来。

  2. 根据已定的算法估算文件可能的大小;

  #define NRL_CHECK_SIZE(req, size, max, chunk_size)

  (req<= (size) || max <= (chunk_size))

  /*first, try to predict filesize */

  /*XXX: should this table be tunable? */

  start_off= 0;

  if(size <= 16 * 1024) {

  size= 16 * 1024;

  }else if (size <= 32 * 1024) {

  size= 32 * 1024;

  }else if (size <= 64 * 1024) {

  size= 64 * 1024;

  }else if (size <= 128 * 1024) {

  size= 128 * 1024;

  }else if (size <= 256 * 1024) {

  size= 256 * 1024;

  }else if (size <= 512 * 1024) {

  size= 512 * 1024;

  }else if (size <= 1024 * 1024) {

  size= 1024 * 1024;

  }else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {

  start_off= ((loff_t)ac->ac_o_ex.fe_logical >>

  (21- bsbits)) << 21;

  size= 2 * 1024 * 1024;

  }else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {

  start_off= ((loff_t)ac->ac_o_ex.fe_logical >>

  (22- bsbits)) << 22;

  size= 4 * 1024 * 1024;

  }else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,

  (8<<20)>>bsbits,max, 8 * 1024)) {

  start_off= ((loff_t)ac->ac_o_ex.fe_logical >>

  (23- bsbits)) << 23;

  size= 8 * 1024 * 1024;

  }else {

  start_off= (loff_t)ac->ac_o_ex.fe_logical << bsbits;

  size =ac->ac_o_ex.fe_len << bsbits;

  }

  size= size >> bsbits;

  start= start_off >> bsbits;

  由此可见,预估文件大小之后得到的size和start肯定比原来的要大一些。

  3. check一下,是否覆盖了已有的prealloc空间。(如果覆盖,那就BUG);

  4. 更新ac_g_ex:根据(2)中size和start更新ac_g_ex;

  ac->ac_g_ex.fe_logical= start;

  ac->ac_g_ex.fe_len= EXT4_NUM_B2C(sbi, size);

  由上可见,通过ext4_mb_normalize_request()函数主要更新了ac->ac_g_ex成员。

  而ac->ac_b_ex是在ext4_mb_regular_allocator()函数初始化的,其表示可以分配的最佳的extent;隐含意思,就是就按这么分配。

  而ac-> ac_f_ex是在prealloc空间初始化之前保留ac_b_ex的副本,在ext4_mb_new_inode_pa()或ext4_mb_new_group_pa()中定义。

  3. 预分配空间描述符ext4_allocation_contex

  描述预分配空间大小等属性的描述符ext4_prealloc_space:

  structext4_prealloc_space {

  struct list_head pa_inode_list;

  struct list_head pa_group_list;

  union {

  struct list_head pa_tmp_list;

  struct rcu_head pa_rcu;

  } u;

  spinlock_t pa_lock;

  atomic_t pa_count;

  unsigned pa_deleted;

  ext4_fsblk_t pa_pstart; /*phys. block */

  ext4_lblk_t pa_lstart; /*log. block */

  ext4_grpblk_t pa_len; /*len of preallocated chunk */

  ext4_grpblk_t pa_free; /* howmany blocks are free */

  unsigned short pa_type; /* pa type.inode or group */

  spinlock_t *pa_obj_lock;

  struct inode *pa_inode; /*hack, for history only */

  };

  其中有四个结构体非常重要:

  pa_lstart -> prealloc 空间的起始逻辑地址(对文件而言);

  pa_pstart -> prealloc 空间的起始物理地址;

  pa_len -> prealloc 空间的长度;

  pa_free -> prealloc 空间的可用长度;

  这个结构体是在函数ext4_mb_new_inode_pa()或ext4_mb_new_group_pa()中初始化。

  暂时就分析这么几个结构体吧。

  作者:Younger Liu,

  本作品采用知识共享署名-非商业性使用-相同方式共享 3.0 未本地化版本许可协议进行许可。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表