首页 > 学院 > 开发设计 > 正文

7 hashCode方法,equals方法,HashSet,HashMap关系?

2019-11-06 06:57:41
字体:
来源:转载
供稿:网友

题目:请说出hashCode方法,equals方法,HashSet,HashMap关系?

1,HashSet是采用HashMap来实现的

2,这个hashMap的key就是放进HashSet中的对象,value就是一个Object类型对象

3,当调用HashSet的add方法时,实际上是向HashMap中添加了一行(key-value),该行的key就是想HashSet曾加的那个对象,该行的value就是一个Object类型的常量。

4,HashMap底层采用数组来维护。

5,调用增加的那个对象的hashCode方法,来得到一个hashCode值,然后根据该值来计算出一个数组的下表索引(计算出数组中的一个位置)

6,将准备增加到map中的对象与该位置上的对象进行比较(equals方法),如果相同,那么就将该位置上的那个对象(Entry类型)的value只替换掉,否则沿着该Entry的链继续重复上述过程,如果到链的最后仍然没有找到与此对象相同的对象,那么这个时候就会将该对象增加到数组中,将数组中该位置上的那个Entry对象链到该对象的后面。

7,对于HashSet,HashMap来说,这样做就是为了提高查找的效率,使得查找时间不随着Set或者Map的大小而改变。

jdk1.8

HashSet源码

/* * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved. * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. */package java.util;import java.io.InvalidObjectException;/** * This class implements the <tt>Set</tt> interface, backed by a hash table * (actually a <tt>HashMap</tt> instance).  It makes no guarantees as to the * iteration order of the set; in particular, it does not guarantee that the * order will remain constant over time.  This class permits the <tt>null</tt> * element. * * <p>This class offers constant time performance for the basic Operations * (<tt>add</tt>, <tt>remove</tt>, <tt>contains</tt> and <tt>size</tt>), * assuming the hash function disperses the elements properly among the * buckets.  Iterating over this set requires time proportional to the sum of * the <tt>HashSet</tt> instance's size (the number of elements) plus the * "capacity" of the backing <tt>HashMap</tt> instance (the number of * buckets).  Thus, it's very important not to set the initial capacity too * high (or the load factor too low) if iteration performance is important. * * <p><strong>Note that this implementation is not synchronized.</strong> * If multiple threads access a hash set concurrently, and at least one of * the threads modifies the set, it <i>must</i> be synchronized externally. * This is typically accomplished by synchronizing on some object that * naturally encapsulates the set. * * If no such object exists, the set should be "wrapped" using the * {@link Collections#synchronizedSet Collections.synchronizedSet} * method.  This is best done at creation time, to prevent accidental * unsynchronized access to the set:<pre> *   Set s = Collections.synchronizedSet(new HashSet(...));</pre> * * <p>The iterators returned by this class's <tt>iterator</tt> method are * <i>fail-fast</i>: if the set is modified at any time after the iterator is * created, in any way except through the iterator's own <tt>remove</tt> * method, the Iterator throws a {@link ConcurrentModificationException}. * Thus, in the face of concurrent modification, the iterator fails quickly * and cleanly, rather than risking arbitrary, non-deterministic behavior at * an undetermined time in the future. * * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed * as it is, generally speaking, impossible to make any hard guarantees in the * presence of unsynchronized concurrent modification.  Fail-fast iterators * throw <tt>ConcurrentModificationException</tt> on a best-effort basis. * Therefore, it would be wrong to write a program that depended on this * exception for its correctness: <i>the fail-fast behavior of iterators * should be used only to detect bugs.</i> * * <p>This class is a member of the * <a href="{@docRoot}/../technotes/guides/collections/index.html"> * Java Collections Framework</a>. * * @param <E> the type of elements maintained by this set * * @author  Josh Bloch * @author  Neal Gafter * @see     Collection * @see     Set * @see     TreeSet * @see     HashMap * @since   1.2 */public class HashSet<E>    extends AbstractSet<E>    implements Set<E>, Cloneable, java.io.Serializable{    static final long serialVersionUID = -5024744406713321676L;    private transient HashMap<E,Object> map;    // Dummy value to associate with an Object in the backing Map    private static final Object PRESENT = new Object();    /**     * Constructs a new, empty set; the backing <tt>HashMap</tt> instance has     * default initial capacity (16) and load factor (0.75).     */    public HashSet() {        map = new HashMap<>();    }    /**     * Constructs a new set containing the elements in the specified     * collection.  The <tt>HashMap</tt> is created with default load factor     * (0.75) and an initial capacity sufficient to contain the elements in     * the specified collection.     *     * @param c the collection whose elements are to be placed into this set     * @throws NullPointerException if the specified collection is null     */    public HashSet(Collection<? extends E> c) {        map = new HashMap<>(Math.max((int) (c.size()/.75f) + 1, 16));        addAll(c);    }    /**     * Constructs a new, empty set; the backing <tt>HashMap</tt> instance has     * the specified initial capacity and the specified load factor.     *     * @param      initialCapacity   the initial capacity of the hash map     * @param      loadFactor        the load factor of the hash map     * @throws     IllegalArgumentException if the initial capacity is less     *             than zero, or if the load factor is nonpositive     */    public HashSet(int initialCapacity, float loadFactor) {        map = new HashMap<>(initialCapacity, loadFactor);    }    /**     * Constructs a new, empty set; the backing <tt>HashMap</tt> instance has     * the specified initial capacity and default load factor (0.75).     *     * @param      initialCapacity   the initial capacity of the hash table     * @throws     IllegalArgumentException if the initial capacity is less     *             than zero     */    public HashSet(int initialCapacity) {        map = new HashMap<>(initialCapacity);    }    /**     * Constructs a new, empty linked hash set.  (This package private     * constructor is only used by LinkedHashSet.) The backing     * HashMap instance is a LinkedHashMap with the specified initial     * capacity and the specified load factor.     *     * @param      initialCapacity   the initial capacity of the hash map     * @param      loadFactor        the load factor of the hash map     * @param      dummy             ignored (distinguishes this     *             constructor from other int, float constructor.)     * @throws     IllegalArgumentException if the initial capacity is less     *             than zero, or if the load factor is nonpositive     */    HashSet(int initialCapacity, float loadFactor, boolean dummy) {        map = new LinkedHashMap<>(initialCapacity, loadFactor);    }    /**     * Returns an iterator over the elements in this set.  The elements     * are returned in no particular order.     *     * @return an Iterator over the elements in this set     * @see ConcurrentModificationException     */    public Iterator<E> iterator() {        return map.keySet().iterator();    }    /**     * Returns the number of elements in this set (its cardinality).     *     * @return the number of elements in this set (its cardinality)     */    public int size() {        return map.size();    }    /**     * Returns <tt>true</tt> if this set contains no elements.     *     * @return <tt>true</tt> if this set contains no elements     */    public boolean isEmpty() {        return map.isEmpty();    }    /**     * Returns <tt>true</tt> if this set contains the specified element.     * More formally, returns <tt>true</tt> if and only if this set     * contains an element <tt>e</tt> such that     * <tt>(o==null ? e==null : o.equals(e))</tt>.     *     * @param o element whose presence in this set is to be tested     * @return <tt>true</tt> if this set contains the specified element     */    public boolean contains(Object o) {        return map.containsKey(o);    }    /**     * Adds the specified element to this set if it is not already present.     * More formally, adds the specified element <tt>e</tt> to this set if     * this set contains no element <tt>e2</tt> such that     * <tt>(e==null ? e2==null : e.equals(e2))</tt>.     * If this set already contains the element, the call leaves the set     * unchanged and returns <tt>false</tt>.     *     * @param e element to be added to this set     * @return <tt>true</tt> if this set did not already contain the specified     * element     */    public boolean add(E e) {        return map.put(e, PRESENT)==null;    }    /**     * Removes the specified element from this set if it is present.     * More formally, removes an element <tt>e</tt> such that     * <tt>(o==null ? e==null : o.equals(e))</tt>,     * if this set contains such an element.  Returns <tt>true</tt> if     * this set contained the element (or equivalently, if this set     * changed as a result of the call).  (This set will not contain the     * element once the call returns.)     *     * @param o object to be removed from this set, if present     * @return <tt>true</tt> if the set contained the specified element     */    public boolean remove(Object o) {        return map.remove(o)==PRESENT;    }    /**     * Removes all of the elements from this set.     * The set will be empty after this call returns.     */    public void clear() {        map.clear();    }    /**     * Returns a shallow copy of this <tt>HashSet</tt> instance: the elements     * themselves are not cloned.     *     * @return a shallow copy of this set     */    @SuppressWarnings("unchecked")    public Object clone() {        try {            HashSet<E> newSet = (HashSet<E>) super.clone();            newSet.map = (HashMap<E, Object>) map.clone();            return newSet;        } catch (CloneNotSupportedException e) {            throw new InternalError(e);        }    }    /**     * Save the state of this <tt>HashSet</tt> instance to a stream (that is,     * serialize it).     *     * @serialData The capacity of the backing <tt>HashMap</tt> instance     *             (int), and its load factor (float) are emitted, followed by     *             the size of the set (the number of elements it contains)     *             (int), followed by all of its elements (each an Object) in     *             no particular order.     */    private void writeObject(java.io.ObjectOutputStream s)        throws java.io.IOException {        // Write out any hidden serialization magic        s.defaultWriteObject();        // Write out HashMap capacity and load factor        s.writeInt(map.capacity());        s.writeFloat(map.loadFactor());        // Write out size        s.writeInt(map.size());        // Write out all elements in the proper order.        for (E e : map.keySet())            s.writeObject(e);    }    /**     * Reconstitute the <tt>HashSet</tt> instance from a stream (that is,     * deserialize it).     */    private void readObject(java.io.ObjectInputStream s)        throws java.io.IOException, ClassNotFoundException {        // Read in any hidden serialization magic        s.defaultReadObject();        // Read capacity and verify non-negative.        int capacity = s.readInt();        if (capacity < 0) {            throw new InvalidObjectException("Illegal capacity: " +                                             capacity);        }        // Read load factor and verify positive and non NaN.        float loadFactor = s.readFloat();        if (loadFactor <= 0 || Float.isNaN(loadFactor)) {            throw new InvalidObjectException("Illegal load factor: " +                                             loadFactor);        }        // Read size and verify non-negative.        int size = s.readInt();        if (size < 0) {            throw new InvalidObjectException("Illegal size: " +                                             size);        }        // Set the capacity according to the size and load factor ensuring that        // the HashMap is at least 25% full but clamping to maximum capacity.        capacity = (int) Math.min(size * Math.min(1 / loadFactor, 4.0f),                HashMap.MAXIMUM_CAPACITY);        // Create backing HashMap        map = (((HashSet<?>)this) instanceof LinkedHashSet ?               new LinkedHashMap<E,Object>(capacity, loadFactor) :               new HashMap<E,Object>(capacity, loadFactor));        // Read in all elements in the proper order.        for (int i=0; i<size; i++) {            @SuppressWarnings("unchecked")                E e = (E) s.readObject();            map.put(e, PRESENT);        }    }    /**     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>     * and <em>fail-fast</em> {@link Spliterator} over the elements in this     * set.     *     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED} and     * {@link Spliterator#DISTINCT}.  Overriding implementations should document     * the reporting of additional characteristic values.     *     * @return a {@code Spliterator} over the elements in this set     * @since 1.8     */    public Spliterator<E> spliterator() {        return new HashMap.KeySpliterator<E,Object>(map, 0, -1, 0, 0);    }}

HashMap源码

/* * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved. * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. */package java.util;import java.io.IOException;import java.io.InvalidObjectException;import java.io.Serializable;import java.lang.reflect.ParameterizedType;import java.lang.reflect.Type;import java.util.function.BiConsumer;import java.util.function.BiFunction;import java.util.function.Consumer;import java.util.function.Function;/** * Hash table based implementation of the <tt>Map</tt> interface.  This * implementation provides all of the optional map operations, and permits * <tt>null</tt> values and the <tt>null</tt> key.  (The <tt>HashMap</tt> * class is roughly equivalent to <tt>Hashtable</tt>, except that it is * unsynchronized and permits nulls.)  This class makes no guarantees as to * the order of the map; in particular, it does not guarantee that the order * will remain constant over time. * * <p>This implementation provides constant-time performance for the basic * operations (<tt>get</tt> and <tt>put</tt>), assuming the hash function * disperses the elements properly among the buckets.  Iteration over * collection views requires time proportional to the "capacity" of the * <tt>HashMap</tt> instance (the number of buckets) plus its size (the number * of key-value mappings).  Thus, it's very important not to set the initial * capacity too high (or the load factor too low) if iteration performance is * important. * * <p>An instance of <tt>HashMap</tt> has two parameters that affect its * performance: <i>initial capacity</i> and <i>load factor</i>.  The * <i>capacity</i> is the number of buckets in the hash table, and the initial * capacity is simply the capacity at the time the hash table is created.  The * <i>load factor</i> is a measure of how full the hash table is allowed to * get before its capacity is automatically increased.  When the number of * entries in the hash table exceeds the product of the load factor and the * current capacity, the hash table is <i>rehashed</i> (that is, internal data * structures are rebuilt) so that the hash table has approximately twice the * number of buckets. * * <p>As a general rule, the default load factor (.75) offers a good * tradeoff between time and space costs.  Higher values decrease the * space overhead but increase the lookup cost (reflected in most of * the operations of the <tt>HashMap</tt> class, including * <tt>get</tt> and <tt>put</tt>).  The expected number of entries in * the map and its load factor should be taken into account when * setting its initial capacity, so as to minimize the number of * rehash operations.  If the initial capacity is greater than the * maximum number of entries divided by the load factor, no rehash * operations will ever occur. * * <p>If many mappings are to be stored in a <tt>HashMap</tt> * instance, creating it with a sufficiently large capacity will allow * the mappings to be stored more efficiently than letting it perform * automatic rehashing as needed to grow the table.  Note that using * many keys with the same {@code hashCode()} is a sure way to slow * down performance of any hash table. To ameliorate impact, when keys * are {@link Comparable}, this class may use comparison order among * keys to help break ties. * * <p><strong>Note that this implementation is not synchronized.</strong> * If multiple threads access a hash map concurrently, and at least one of * the threads modifies the map structurally, it <i>must</i> be * synchronized externally.  (A structural modification is any operation * that adds or deletes one or more mappings; merely changing the value * associated with a key that an instance already contains is not a * structural modification.)  This is typically accomplished by * synchronizing on some object that naturally encapsulates the map. * * If no such object exists, the map should be "wrapped" using the * {@link Collections#synchronizedMap Collections.synchronizedMap} * method.  This is best done at creation time, to prevent accidental * unsynchronized access to the map:<pre> *   Map m = Collections.synchronizedMap(new HashMap(...));</pre> * * <p>The iterators returned by all of this class's "collection view methods" * are <i>fail-fast</i>: if the map is structurally modified at any time after * the iterator is created, in any way except through the iterator's own * <tt>remove</tt> method, the iterator will throw a * {@link ConcurrentModificationException}.  Thus, in the face of concurrent * modification, the iterator fails quickly and cleanly, rather than risking * arbitrary, non-deterministic behavior at an undetermined time in the * future. * * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed * as it is, generally speaking, impossible to make any hard guarantees in the * presence of unsynchronized concurrent modification.  Fail-fast iterators * throw <tt>ConcurrentModificationException</tt> on a best-effort basis. * Therefore, it would be wrong to write a program that depended on this * exception for its correctness: <i>the fail-fast behavior of iterators * should be used only to detect bugs.</i> * * <p>This class is a member of the * <a href="{@docRoot}/../technotes/guides/collections/index.html"> * Java Collections Framework</a>. * * @param <K> the type of keys maintained by this map * @param <V> the type of mapped values * * @author  Doug Lea * @author  Josh Bloch * @author  Arthur van Hoff * @author  Neal Gafter * @see     Object#hashCode() * @see     Collection * @see     Map * @see     TreeMap * @see     Hashtable * @since   1.2 */public class HashMap<K,V> extends AbstractMap<K,V>    implements Map<K,V>, Cloneable, Serializable {    private static final long serialVersionUID = 362498820763181265L;    /*     * Implementation notes.     *     * This map usually acts as a binned (bucketed) hash table, but     * when bins get too large, they are transformed into bins of     * TreeNodes, each structured similarly to those in     * java.util.TreeMap. Most methods try to use normal bins, but     * relay to TreeNode methods when applicable (simply by checking     * instanceof a node).  Bins of TreeNodes may be traversed and     * used like any others, but additionally support faster lookup     * when overpopulated. However, since the vast majority of bins in     * normal use are not overpopulated, checking for existence of     * tree bins may be delayed in the course of table methods.     *     * Tree bins (i.e., bins whose elements are all TreeNodes) are     * ordered primarily by hashCode, but in the case of ties, if two     * elements are of the same "class C implements Comparable<C>",     * type then their compareTo method is used for ordering. (We     * conservatively check generic types via reflection to validate     * this -- see method comparableClassFor).  The added complexity     * of tree bins is worthwhile in providing worst-case O(log n)     * operations when keys either have distinct hashes or are     * orderable, Thus, performance degrades gracefully under     * accidental or malicious usages in which hashCode() methods     * return values that are poorly distributed, as well as those in     * which many keys share a hashCode, so long as they are also     * Comparable. (If neither of these apply, we may waste about a     * factor of two in time and space compared to taking no     * precautions. But the only known cases stem from poor user     * programming practices that are already so slow that this makes     * little difference.)     *     * Because TreeNodes are about twice the size of regular nodes, we     * use them only when bins contain enough nodes to warrant use     * (see TREEIFY_THRESHOLD). And when they become too small (due to     * removal or resizing) they are converted back to plain bins.  In     * usages with well-distributed user hashCodes, tree bins are     * rarely used.  Ideally, under random hashCodes, the frequency of     * nodes in bins follows a Poisson distribution     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a     * parameter of about 0.5 on average for the default resizing     * threshold of 0.75, although with a large variance because of     * resizing granularity. Ignoring variance, the expected     * occurrences of list size k are (exp(-0.5) * pow(0.5, k) /     * factorial(k)). The first values are:     *     * 0:    0.60653066     * 1:    0.30326533     * 2:    0.07581633     * 3:    0.01263606     * 4:    0.00157952     * 5:    0.00015795     * 6:    0.00001316     * 7:    0.00000094     * 8:    0.00000006     * more: less than 1 in ten million     *     * The root of a tree bin is normally its first node.  However,     * sometimes (currently only upon Iterator.remove), the root might     * be elsewhere, but can be recovered following parent links     * (method TreeNode.root()).     *     * All applicable internal methods accept a hash code as an     * argument (as normally supplied from a public method), allowing     * them to call each other without recomputing user hashCodes.     * Most internal methods also accept a "tab" argument, that is     * normally the current table, but may be a new or old one when     * resizing or converting.     *     * When bin lists are treeified, split, or untreeified, we keep     * them in the same relative access/traversal order (i.e., field     * Node.next) to better preserve locality, and to slightly     * simplify handling of splits and traversals that invoke     * iterator.remove. When using comparators on insertion, to keep a     * total ordering (or as close as is required here) across     * rebalancings, we compare classes and identityHashCodes as     * tie-breakers.     *     * The use and transitions among plain vs tree modes is     * complicated by the existence of subclass LinkedHashMap. See     * below for hook methods defined to be invoked upon insertion,     * removal and access that allow LinkedHashMap internals to     * otherwise remain independent of these mechanics. (This also     * requires that a map instance be passed to some utility methods     * that may create new nodes.)     *     * The concurrent-programming-like SSA-based coding style helps     * avoid aliasing errors amid all of the twisty pointer operations.     */    /**     * The default initial capacity - MUST be a power of two.     */    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16    /**     * The maximum capacity, used if a higher value is implicitly specified     * by either of the constructors with arguments.     * MUST be a power of two <= 1<<30.     */    static final int MAXIMUM_CAPACITY = 1 << 30;    /**     * The load factor used when none specified in constructor.     */    static final float DEFAULT_LOAD_FACTOR = 0.75f;    /**     * The bin count threshold for using a tree rather than list for a     * bin.  Bins are converted to trees when adding an element to a     * bin with at least this many nodes. The value must be greater     * than 2 and should be at least 8 to mesh with assumptions in     * tree removal about conversion back to plain bins upon     * shrinkage.     */    static final int TREEIFY_THRESHOLD = 8;    /**     * The bin count threshold for untreeifying a (split) bin during a     * resize operation. Should be less than TREEIFY_THRESHOLD, and at     * most 6 to mesh with shrinkage detection under removal.     */    static final int UNTREEIFY_THRESHOLD = 6;    /**     * The smallest table capacity for which bins may be treeified.     * (Otherwise the table is resized if too many nodes in a bin.)     * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts     * between resizing and treeification thresholds.     */    static final int MIN_TREEIFY_CAPACITY = 64;    /**     * Basic hash bin node, used for most entries.  (See below for     * TreeNode subclass, and in LinkedHashMap for its Entry subclass.)     */    static class Node<K,V> implements Map.Entry<K,V> {        final int hash;        final K key;        V value;        Node<K,V> next;        Node(int hash, K key, V value, Node<K,V> next) {            this.hash = hash;            this.key = key;            this.value = value;            this.next = next;        }        public final K getKey()        { return key; }        public final V getValue()      { return value; }        public final String toString() { return key + "=" + value; }        public final int hashCode() {            return Objects.hashCode(key) ^ Objects.hashCode(value);        }        public final V setValue(V newValue) {            V oldValue = value;            value = newValue;            return oldValue;        }        public final boolean equals(Object o) {            if (o == this)                return true;            if (o instanceof Map.Entry) {                Map.Entry<?,?> e = (Map.Entry<?,?>)o;                if (Objects.equals(key, e.getKey()) &&                    Objects.equals(value, e.getValue()))                    return true;            }            return false;        }    }    /* ---------------- Static utilities -------------- */    /**     * Computes key.hashCode() and spreads (XORs) higher bits of hash     * to lower.  Because the table uses power-of-two masking, sets of     * hashes that vary only in bits above the current mask will     * always collide. (Among known examples are sets of Float keys     * holding consecutive whole numbers in small tables.)  So we     * apply a transform that spreads the impact of higher bits     * downward. There is a tradeoff between speed, utility, and     * quality of bit-spreading. Because many common sets of hashes     * are already reasonably distributed (so don't benefit from     * spreading), and because we use trees to handle large sets of     * collisions in bins, we just XOR some shifted bits in the     * cheapest possible way to reduce systematic lossage, as well as     * to incorporate impact of the highest bits that would otherwise     * never be used in index calculations because of table bounds.     */    static final int hash(Object key) {        int h;        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);    }    /**     * Returns x's Class if it is of the form "class C implements     * Comparable<C>", else null.     */    static Class<?> comparableClassFor(Object x) {        if (x instanceof Comparable) {            Class<?> c; Type[] ts, as; Type t; ParameterizedType p;            if ((c = x.getClass()) == String.class) // bypass checks                return c;            if ((ts = c.getGenericInterfaces()) != null) {                for (int i = 0; i < ts.length; ++i) {                    if (((t = ts[i]) instanceof ParameterizedType) &&                        ((p = (ParameterizedType)t).getRawType() ==                         Comparable.class) &&                        (as = p.getActualTypeArguments()) != null &&                        as.length == 1 && as[0] == c) // type arg is c                        return c;                }            }        }        return null;    }    /**     * Returns k.compareTo(x) if x matches kc (k's screened comparable     * class), else 0.     */    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable    static int compareComparables(Class<?> kc, Object k, Object x) {        return (x == null || x.getClass() != kc ? 0 :                ((Comparable)k).compareTo(x));    }    /**     * Returns a power of two size for the given target capacity.     */    static final int tableSizeFor(int cap) {        int n = cap - 1;        n |= n >>> 1;        n |= n >>> 2;        n |= n >>> 4;        n |= n >>> 8;        n |= n >>> 16;        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;    }    /* ---------------- Fields -------------- */    /**     * The table, initialized on first use, and resized as     * necessary. When allocated, length is always a power of two.     * (We also tolerate length zero in some operations to allow     * bootstrapping mechanics that are currently not needed.)     */    transient Node<K,V>[] table;    /**     * Holds cached entrySet(). Note that AbstractMap fields are used     * for keySet() and values().     */    transient Set<Map.Entry<K,V>> entrySet;    /**     * The number of key-value mappings contained in this map.     */    transient int size;    /**     * The number of times this HashMap has been structurally modified     * Structural modifications are those that change the number of mappings in     * the HashMap or otherwise modify its internal structure (e.g.,     * rehash).  This field is used to make iterators on Collection-views of     * the HashMap fail-fast.  (See ConcurrentModificationException).     */    transient int modCount;    /**     * The next size value at which to resize (capacity * load factor).     *     * @serial     */    // (The javadoc description is true upon serialization.    // Additionally, if the table array has not been allocated, this    // field holds the initial array capacity, or zero signifying    // DEFAULT_INITIAL_CAPACITY.)    int threshold;    /**     * The load factor for the hash table.     *     * @serial     */    final float loadFactor;    /* ---------------- Public operations -------------- */    /**     * Constructs an empty <tt>HashMap</tt> with the specified initial     * capacity and load factor.     *     * @param  initialCapacity the initial capacity     * @param  loadFactor      the load factor     * @throws IllegalArgumentException if the initial capacity is negative     *         or the load factor is nonpositive     */    public HashMap(int initialCapacity, float loadFactor) {        if (initialCapacity < 0)            throw new IllegalArgumentException("Illegal initial capacity: " +                                               initialCapacity);        if (initialCapacity > MAXIMUM_CAPACITY)            initialCapacity = MAXIMUM_CAPACITY;        if (loadFactor <= 0 || Float.isNaN(loadFactor))            throw new IllegalArgumentException("Illegal load factor: " +                                               loadFactor);        this.loadFactor = loadFactor;        this.threshold = tableSizeFor(initialCapacity);    }    /**     * Constructs an empty <tt>HashMap</tt> with the specified initial     * capacity and the default load factor (0.75).     *     * @param  initialCapacity the initial capacity.     * @throws IllegalArgumentException if the initial capacity is negative.     */    public HashMap(int initialCapacity) {        this(initialCapacity, DEFAULT_LOAD_FACTOR);    }    /**     * Constructs an empty <tt>HashMap</tt> with the default initial capacity     * (16) and the default load factor (0.75).     */    public HashMap() {        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted    }    /**     * Constructs a new <tt>HashMap</tt> with the same mappings as the     * specified <tt>Map</tt>.  The <tt>HashMap</tt> is created with     * default load factor (0.75) and an initial capacity sufficient to     * hold the mappings in the specified <tt>Map</tt>.     *     * @param   m the map whose mappings are to be placed in this map     * @throws  NullPointerException if the specified map is null     */    public HashMap(Map<? extends K, ? extends V> m) {        this.loadFactor = DEFAULT_LOAD_FACTOR;        putMapEntries(m, false);    }    /**     * Implements Map.putAll and Map constructor     *     * @param m the map     * @param evict false when initially constructing this map, else     * true (relayed to method afterNodeInsertion).     */    final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {        int s = m.size();        if (s > 0) {            if (table == null) { // pre-size                float ft = ((float)s / loadFactor) + 1.0F;                int t = ((ft < (float)MAXIMUM_CAPACITY) ?                         (int)ft : MAXIMUM_CAPACITY);                if (t > threshold)                    threshold = tableSizeFor(t);            }            else if (s > threshold)                resize();            for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {                K key = e.getKey();                V value = e.getValue();                putVal(hash(key), key, value, false, evict);            }        }    }    /**     * Returns the number of key-value mappings in this map.     *     * @return the number of key-value mappings in this map     */    public int size() {        return size;    }    /**     * Returns <tt>true</tt> if this map contains no key-value mappings.     *     * @return <tt>true</tt> if this map contains no key-value mappings     */    public boolean isEmpty() {        return size == 0;    }    /**     * Returns the value to which the specified key is mapped,     * or {@code null} if this map contains no mapping for the key.     *     * <p>More formally, if this map contains a mapping from a key     * {@code k} to a value {@code v} such that {@code (key==null ? k==null :     * key.equals(k))}, then this method returns {@code v}; otherwise     * it returns {@code null}.  (There can be at most one such mapping.)     *     * <p>A return value of {@code null} does not <i>necessarily</i>     * indicate that the map contains no mapping for the key; it's also     * possible that the map explicitly maps the key to {@code null}.     * The {@link #containsKey containsKey} operation may be used to     * distinguish these two cases.     *     * @see #put(Object, Object)     */    public V get(Object key) {        Node<K,V> e;        return (e = getNode(hash(key), key)) == null ? null : e.value;    }    /**     * Implements Map.get and related methods     *     * @param hash hash for key     * @param key the key     * @return the node, or null if none     */    final Node<K,V> getNode(int hash, Object key) {        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;        if ((tab = table) != null && (n = tab.length) > 0 &&            (first = tab[(n - 1) & hash]) != null) {            if (first.hash == hash && // always check first node                ((k = first.key) == key || (key != null && key.equals(k))))                return first;            if ((e = first.next) != null) {                if (first instanceof TreeNode)                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);                do {                    if (e.hash == hash &&                        ((k = e.key) == key || (key != null && key.equals(k))))                        return e;                } while ((e = e.next) != null);            }        }        return null;    }    /**     * Returns <tt>true</tt> if this map contains a mapping for the     * specified key.     *     * @param   key   The key whose presence in this map is to be tested     * @return <tt>true</tt> if this map contains a mapping for the specified     * key.     */    public boolean containsKey(Object key) {        return getNode(hash(key), key) != null;    }    /**     * Associates the specified value with the specified key in this map.     * If the map previously contained a mapping for the key, the old     * value is replaced.     *     * @param key key with which the specified value is to be associated     * @param value value to be associated with the specified key     * @return the previous value associated with <tt>key</tt>, or     *         <tt>null</tt> if there was no mapping for <tt>key</tt>.     *         (A <tt>null</tt> return can also indicate that the map     *         previously associated <tt>null</tt> with <tt>key</tt>.)     */    public V put(K key, V value) {        return putVal(hash(key), key, value, false, true);    }    /**     * Implements Map.put and related methods     *     * @param hash hash for key     * @param key the key     * @param value the value to put     * @param onlyIfAbsent if true, don't change existing value     * @param evict if false, the table is in creation mode.     * @return previous value, or null if none     */    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,                   boolean evict) {        Node<K,V>[] tab; Node<K,V> p; int n, i;        if ((tab = table) == null || (n = tab.length) == 0)            n = (tab = resize()).length;        if ((p = tab[i = (n - 1) & hash]) == null)            tab[i] = newNode(hash, key, value, null);        else {            Node<K,V> e; K k;            if (p.hash == hash &&                ((k = p.key) == key || (key != null && key.equals(k))))                e = p;            else if (p instanceof TreeNode)                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);            else {                for (int binCount = 0; ; ++binCount) {                    if ((e = p.next) == null) {                        p.next = newNode(hash, key, value, null);                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st                            treeifyBin(tab, hash);                        break;                    }                    if (e.hash == hash &&                        ((k = e.key) == key || (key != null && key.equals(k))))                        break;                    p = e;                }            }            if (e != null) { // existing mapping for key                V oldValue = e.value;                if (!onlyIfAbsent || oldValue == null)                    e.value = value;                afterNodeAccess(e);                return oldValue;            }        }        ++modCount;        if (++size > threshold)            resize();        afterNodeInsertion(evict);        return null;    }    /**     * Initializes or doubles table size.  If null, allocates in     * accord with initial capacity target held in field threshold.     * Otherwise, because we are using power-of-two expansion, the     * elements from each bin must either stay at same index, or move     * with a power of two offset in the new table.     *     * @return the table     */    final Node<K,V>[] resize() {        Node<K,V>[] oldTab = table;        int oldCap = (oldTab == null) ? 0 : oldTab.length;        int oldThr = threshold;        int newCap, newThr = 0;        if (oldCap > 0) {            if (oldCap >= MAXIMUM_CAPACITY) {                threshold = Integer.MAX_VALUE;                return oldTab;            }            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&                     oldCap >= DEFAULT_INITIAL_CAPACITY)                newThr = oldThr << 1; // double threshold        }        else if (oldThr > 0) // initial capacity was placed in threshold            newCap = oldThr;        else {               // zero initial threshold signifies using defaults            newCap = DEFAULT_INITIAL_CAPACITY;            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);        }        if (newThr == 0) {            float ft = (float)newCap * loadFactor;            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?                      (int)ft : Integer.MAX_VALUE);        }        threshold = newThr;        @SuppressWarnings({"rawtypes","unchecked"})            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];        table = newTab;        if (oldTab != null) {            for (int j = 0; j < oldCap; ++j) {                Node<K,V> e;                if ((e = oldTab[j]) != null) {                    oldTab[j] = null;                    if (e.next == null)                        newTab[e.hash & (newCap - 1)] = e;                    else if (e instanceof TreeNode)                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);                    else { // preserve order                        Node<K,V> loHead = null, loTail = null;                        Node<K,V> hiHead = null, hiTail = null;                        Node<K,V> next;                        do {                            next = e.next;                            if ((e.hash & oldCap) == 0) {                                if (loTail == null)                                    loHead = e;                                else                                    loTail.next = e;                                loTail = e;                            }                            else {                                if (hiTail == null)                                    hiHead = e;                                else                                    hiTail.next = e;                                hiTail = e;                            }                        } while ((e = next) != null);                        if (loTail != null) {                            loTail.next = null;                            newTab[j] = loHead;                        }                        if (hiTail != null) {                            hiTail.next = null;                            newTab[j + oldCap] = hiHead;                        }                    }                }            }        }        return newTab;    }    /**     * Replaces all linked nodes in bin at index for given hash unless     * table is too small, in which case resizes instead.     */    final void treeifyBin(Node<K,V>[] tab, int hash) {        int n, index; Node<K,V> e;        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)            resize();        else if ((e = tab[index = (n - 1) & hash]) != null) {            TreeNode<K,V> hd = null, tl = null;            do {                TreeNode<K,V> p = replacementTreeNode(e, null);                if (tl == null)                    hd = p;                else {                    p.prev = tl;                    tl.next = p;                }                tl = p;            } while ((e = e.next) != null);            if ((tab[index] = hd) != null)                hd.treeify(tab);        }    }    /**     * Copies all of the mappings from the specified map to this map.     * These mappings will replace any mappings that this map had for     * any of the keys currently in the specified map.     *     * @param m mappings to be stored in this map     * @throws NullPointerException if the specified map is null     */    public void putAll(Map<? extends K, ? extends V> m) {        putMapEntries(m, true);    }    /**     * Removes the mapping for the specified key from this map if present.     *     * @param  key key whose mapping is to be removed from the map     * @return the previous value associated with <tt>key</tt>, or     *         <tt>null</tt> if there was no mapping for <tt>key</tt>.     *         (A <tt>null</tt> return can also indicate that the map     *         previously associated <tt>null</tt> with <tt>key</tt>.)     */    public V remove(Object key) {        Node<K,V> e;        return (e = removeNode(hash(key), key, null, false, true)) == null ?            null : e.value;    }    /**     * Implements Map.remove and related methods     *     * @param hash hash for key     * @param key the key     * @param value the value to match if matchValue, else ignored     * @param matchValue if true only remove if value is equal     * @param movable if false do not move other nodes while removing     * @return the node, or null if none     */    final Node<K,V> removeNode(int hash, Object key, Object value,                               boolean matchValue, boolean movable) {        Node<K,V>[] tab; Node<K,V> p; int n, index;        if ((tab = table) != null && (n = tab.length) > 0 &&            (p = tab[index = (n - 1) & hash]) != null) {            Node<K,V> node = null, e; K k; V v;            if (p.hash == hash &&                ((k = p.key) == key || (key != null && key.equals(k))))                node = p;            else if ((e = p.next) != null) {                if (p instanceof TreeNode)                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);                else {                    do {                        if (e.hash == hash &&                            ((k = e.key) == key ||                             (key != null && key.equals(k)))) {                            node = e;                            break;                        }                        p = e;                    } while ((e = e.next) != null);                }            }            if (node != null && (!matchValue || (v = node.value) == value ||                                 (value != null && value.equals(v)))) {                if (node instanceof TreeNode)                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);                else if (node == p)                    tab[index] = node.next;                else                    p.next = node.next;                ++modCount;                --size;                afterNodeRemoval(node);                return node;            }        }        return null;    }    /**     * Removes all of the mappings from this map.     * The map will be empty after this call returns.     */    public void clear() {        Node<K,V>[] tab;        modCount++;        if ((tab = table) != null && size > 0) {            size = 0;            for (int i = 0; i < tab.length; ++i)                tab[i] = null;        }    }    /**     * Returns <tt>true</tt> if this map maps one or more keys to the     * specified value.     *     * @param value value whose presence in this map is to be tested     * @return <tt>true</tt> if this map maps one or more keys to the     *         specified value     */    public boolean containsValue(Object value) {        Node<K,V>[] tab; V v;        if ((tab = table) != null && size > 0) {            for (int i = 0; i < tab.length; ++i) {                for (Node<K,V> e = tab[i]; e != null; e = e.next) {                    if ((v = e.value) == value ||                        (value != null && value.equals(v)))                        return true;                }            }        }        return false;    }    /**     * Returns a {@link Set} view of the keys contained in this map.     * The set is backed by the map, so changes to the map are     * reflected in the set, and vice-versa.  If the map is modified     * while an iteration over the set is in progress (except through     * the iterator's own <tt>remove</tt> operation), the results of     * the iteration are undefined.  The set supports element removal,     * which removes the corresponding mapping from the map, via the     * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>     * operations.  It does not support the <tt>add</tt> or <tt>addAll</tt>     * operations.     *     * @return a set view of the keys contained in this map     */    public Set<K> keySet() {        Set<K> ks;        return (ks = keySet) == null ? (keySet = new KeySet()) : ks;    }    final class KeySet extends AbstractSet<K> {        public final int size()                 { return size; }        public final void clear()               { HashMap.this.clear(); }        public final Iterator<K> iterator()     { return new KeyIterator(); }        public final boolean contains(Object o) { return containsKey(o); }        public final boolean remove(Object key) {            return removeNode(hash(key), key, null, false, true) != null;        }        public final Spliterator<K> spliterator() {            return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0);        }        public final void forEach(Consumer<? super K> action) {            Node<K,V>[] tab;            if (action == null)                throw new NullPointerException();            if (size > 0 && (tab = table) != null) {                int mc = modCount;                for (int i = 0; i < tab.length; ++i) {                    for (Node<K,V> e = tab[i]; e != null; e = e.next)                        action.accept(e.key);                }                if (modCount != mc)                    throw new ConcurrentModificationException();            }        }    }    /**     * Returns a {@link Collection} view of the values contained in this map.     * The collection is backed by the map, so changes to the map are     * reflected in the collection, and vice-versa.  If the map is     * modified while an iteration over the collection is in progress     * (except through the iterator's own <tt>remove</tt> operation),     * the results of the iteration are undefined.  The collection     * supports element removal, which removes the corresponding     * mapping from the map, via the <tt>Iterator.remove</tt>,     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,     * <tt>retainAll</tt> and <tt>clear</tt> operations.  It does not     * support the <tt>add</tt> or <tt>addAll</tt> operations.     *     * @return a view of the values contained in this map     */    public Collection<V> values() {        Collection<V> vs;        return (vs = values) == null ? (values = new Values()) : vs;    }    final class Values extends AbstractCollection<V> {        public final int size()                 { return size; }        public final void clear()               { HashMap.this.clear(); }        public final Iterator<V> iterator()     { return new ValueIterator(); }        public final boolean contains(Object o) { return containsValue(o); }        public final Spliterator<V> spliterator() {            return new ValueSpliterator<>(HashMap.this, 0, -1, 0, 0);        }        public final void forEach(Consumer<? super V> action) {            Node<K,V>[] tab;            if (action == null)                throw new NullPointerException();            if (size > 0 && (tab = table) != null) {                int mc = modCount;                for (int i = 0; i < tab.length; ++i) {                    for (Node<K,V> e = tab[i]; e != null; e = e.next)                        action.accept(e.value);                }                if (modCount != mc)                    throw new ConcurrentModificationException();            }        }    }    /**     * Returns a {@link Set} view of the mappings contained in this map.     * The set is backed by the map, so changes to the map are     * reflected in the set, and vice-versa.  If the map is modified     * while an iteration over the set is in progress (except through     * the iterator's own <tt>remove</tt> operation, or through the     * <tt>setValue</tt> operation on a map entry returned by the     * iterator) the results of the iteration are undefined.  The set     * supports element removal, which removes the corresponding     * mapping from the map, via the <tt>Iterator.remove</tt>,     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and     * <tt>clear</tt> operations.  It does not support the     * <tt>add</tt> or <tt>addAll</tt> operations.     *     * @return a set view of the mappings contained in this map     */    public Set<Map.Entry<K,V>> entrySet() {        Set<Map.Entry<K,V>> es;        return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;    }    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {        public final int size()                 { return size; }        public final void clear()               { HashMap.this.clear(); }        public final Iterator<Map.Entry<K,V>> iterator() {            return new EntryIterator();        }        public final boolean contains(Object o) {            if (!(o instanceof Map.Entry))                return false;            Map.Entry<?,?> e = (Map.Entry<?,?>) o;            Object key = e.getKey();            Node<K,V> candidate = getNode(hash(key), key);            return candidate != null && candidate.equals(e);        }        public final boolean remove(Object o) {            if (o instanceof Map.Entry) {                Map.Entry<?,?> e = (Map.Entry<?,?>) o;                Object key = e.getKey();                Object value = e.getValue();                return removeNode(hash(key), key, value, true, true) != null;            }            return false;        }        public final Spliterator<Map.Entry<K,V>> spliterator() {            return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0);        }        public final void forEach(Consumer<? super Map.Entry<K,V>> action) {            Node<K,V>[] tab;            if (action == null)                throw new NullPointerException();            if (size > 0 && (tab = table) != null) {                int mc = modCount;                for (int i = 0; i < tab.length; ++i) {                    for (Node<K,V> e = tab[i]; e != null; e = e.next)                        action.accept(e);                }                if (modCount != mc)                    throw new ConcurrentModificationException();            }        }    }    // Overrides of JDK8 Map extension methods    @Override    public V getOrDefault(Object key, V defaultValue) {        Node<K,V> e;        return (e = getNode(hash(key), key)) == null ? defaultValue : e.value;    }    @Override    public V putIfAbsent(K key, V value) {        return putVal(hash(key), key, value, true, true);    }    @Override    public boolean remove(Object key, Object value) {        return removeNode(hash(key), key, value, true, true) != null;    }    @Override    public boolean replace(K key, V oldValue, V newValue) {        Node<K,V> e; V v;        if ((e = getNode(hash(key), key)) != null &&            ((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) {            e.value = newValue;            afterNodeAccess(e);            return true;        }        return false;    }    @Override    public V replace(K key, V value) {        Node<K,V> e;        if ((e = getNode(hash(key), key)) != null) {            V oldValue = e.value;            e.value = value;            afterNodeAccess(e);            return oldValue;        }        return null;    }    @Override    public V computeIfAbsent(K key,                             Function<? super K, ? extends V> mappingFunction) {        if (mappingFunction == null)            throw new NullPointerException();        int hash = hash(key);        Node<K,V>[] tab; Node<K,V> first; int n, i;        int binCount = 0;        TreeNode<K,V> t = null;        Node<K,V> old = null;        if (size > threshold || (tab = table) == null ||            (n = tab.length) == 0)            n = (tab = resize()).length;        if ((first = tab[i = (n - 1) & hash]) != null) {            if (first instanceof TreeNode)                old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);            else {                Node<K,V> e = first; K k;                do {                    if (e.hash == hash &&                        ((k = e.key) == key || (key != null && key.equals(k)))) {                        old = e;                        break;                    }                    ++binCount;                } while ((e = e.next) != null);            }            V oldValue;            if (old != null && (oldValue = old.value) != null) {                afterNodeAccess(old);                return oldValue;            }        }        V v = mappingFunction.apply(key);        if (v == null) {            return null;        } else if (old != null) {            old.value = v;            afterNodeAccess(old);            return v;        }        else if (t != null)            t.putTreeVal(this, tab, hash, key, v);        else {            tab[i] = newNode(hash, key, v, first);            if (binCount >= TREEIFY_THRESHOLD - 1)                treeifyBin(tab, hash);        }        ++modCount;        ++size;        afterNodeInsertion(true);        return v;    }    public V computeIfPresent(K key,                              BiFunction<? super K, ? super V, ? extends V> remappingFunction) {        if (remappingFunction == null)            throw new NullPointerException();        Node<K,V> e; V oldValue;        int hash = hash(key);        if ((e = getNode(hash, key)) != null &&            (oldValue = e.value) != null) {            V v = remappingFunction.apply(key, oldValue);            if (v != null) {                e.value = v;                afterNodeAccess(e);                return v;            }            else                removeNode(hash, key, null, false, true);        }        return null;    }    @Override    public V compute(K key,                     BiFunction<? super K, ? super V, ? extends V> remappingFunction) {        if (remappingFunction == null)            throw new NullPointerException();        int hash = hash(key);        Node<K,V>[] tab; Node<K,V> first; int n, i;        int binCount = 0;        TreeNode<K,V> t = null;        Node<K,V> old = null;        if (size > threshold || (tab = table) == null ||            (n = tab.length) == 0)            n = (tab = resize()).length;        if ((first = tab[i = (n - 1) & hash]) != null) {            if (first instanceof TreeNode)                old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);            else {                Node<K,V> e = first; K k;                do {                    if (e.hash == hash &&                        ((k = e.key) == key || (key != null && key.equals(k)))) {                        old = e;                        break;                    }                    ++binCount;                } while ((e = e.next) != null);            }        }        V oldValue = (old == null) ? null : old.value;        V v = remappingFunction.apply(key, oldValue);        if (old != null) {            if (v != null) {                old.value = v;                afterNodeAccess(old);            }            else                removeNode(hash, key, null, false, true);        }        else if (v != null) {            if (t != null)                t.putTreeVal(this, tab, hash, key, v);            else {                tab[i] = newNode(hash, key, v, first);                if (binCount >= TREEIFY_THRESHOLD - 1)                    treeifyBin(tab, hash);            }            ++modCount;            ++size;            afterNodeInsertion(true);        }        return v;    }    @Override    public V merge(K key, V value,                   BiFunction<? super V, ? super V, ? extends V> remappingFunction) {        if (value == null)            throw new NullPointerException();        if (remappingFunction == null)            throw new NullPointerException();        int hash = hash(key);        Node<K,V>[] tab; Node<K,V> first; int n, i;        int binCount = 0;        TreeNode<K,V> t = null;        Node<K,V> old = null;        if (size > threshold || (tab = table) == null ||            (n = tab.length) == 0)            n = (tab = resize()).length;        if ((first = tab[i = (n - 1) & hash]) != null) {            if (first instanceof TreeNode)                old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);            else {                Node<K,V> e = first; K k;                do {                    if (e.hash == hash &&                        ((k = e.key) == key || (key != null && key.equals(k)))) {                        old = e;                        break;                    }                    ++binCount;                } while ((e = e.next) != null);            }        }        if (old != null) {            V v;            if (old.value != null)                v = remappingFunction.apply(old.value, value);            else                v = value;            if (v != null) {                old.value = v;                afterNodeAccess(old);            }            else                removeNode(hash, key, null, false, true);            return v;        }        if (value != null) {            if (t != null)                t.putTreeVal(this, tab, hash, key, value);            else {                tab[i] = newNode(hash, key, value, first);                if (binCount >= TREEIFY_THRESHOLD - 1)                    treeifyBin(tab, hash);            }            ++modCount;            ++size;            afterNodeInsertion(true);        }        return value;    }    @Override    public void forEach(BiConsumer<? super K, ? super V> action) {        Node<K,V>[] tab;        if (action == null)            throw new NullPointerException();        if (size > 0 && (tab = table) != null) {            int mc = modCount;            for (int i = 0; i < tab.length; ++i) {                for (Node<K,V> e = tab[i]; e != null; e = e.next)                    action.accept(e.key, e.value);            }            if (modCount != mc)                throw new ConcurrentModificationException();        }    }    @Override    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {        Node<K,V>[] tab;        if (function == null)            throw new NullPointerException();        if (size > 0 && (tab = table) != null) {            int mc = modCount;            for (int i = 0; i < tab.length; ++i) {                for (Node<K,V> e = tab[i]; e != null; e = e.next) {                    e.value = function.apply(e.key, e.value);                }            }            if (modCount != mc)                throw new ConcurrentModificationException();        }    }    /* ------------------------------------------------------------ */    // Cloning and serialization    /**     * Returns a shallow copy of this <tt>HashMap</tt> instance: the keys and     * values themselves are not cloned.     *     * @return a shallow copy of this map     */    @SuppressWarnings("unchecked")    @Override    public Object clone() {        HashMap<K,V> result;        try {            result = (HashMap<K,V>)super.clone();        } catch (CloneNotSupportedException e) {            // this shouldn't happen, since we are Cloneable            throw new InternalError(e);        }        result.reinitialize();        result.putMapEntries(this, false);        return result;    }    // These methods are also used when serializing HashSets    final float loadFactor() { return loadFactor; }    final int capacity() {        return (table != null) ? table.length :            (threshold > 0) ? threshold :            DEFAULT_INITIAL_CAPACITY;    }    /**     * Save the state of the <tt>HashMap</tt> instance to a stream (i.e.,     * serialize it).     *     * @serialData The <i>capacity</i> of the HashMap (the length of the     *             bucket array) is emitted (int), followed by the     *             <i>size</i> (an int, the number of key-value     *             mappings), followed by the key (Object) and value (Object)     *             for each key-value mapping.  The key-value mappings are     *             emitted in no particular order.     */    private void writeObject(java.io.ObjectOutputStream s)        throws IOException {        int buckets = capacity();        // Write out the threshold, loadfactor, and any hidden stuff        s.defaultWriteObject();        s.writeInt(buckets);        s.writeInt(size);        internalWriteEntries(s);    }    /**     * Reconstitute the {@code HashMap} instance from a stream (i.e.,     * deserialize it).     */    private void readObject(java.io.ObjectInputStream s)        throws IOException, ClassNotFoundException {        // Read in the threshold (ignored), loadfactor, and any hidden stuff        s.defaultReadObject();        reinitialize();        if (loadFactor <= 0 || Float.isNaN(loadFactor))            throw new InvalidObjectException("Illegal load factor: " +                                             loadFactor);        s.readInt();                // Read and ignore number of buckets        int mappings = s.readInt(); // Read number of mappings (size)        if (mappings < 0)            throw new InvalidObjectException("Illegal mappings count: " +                                             mappings);        else if (mappings > 0) { // (if zero, use defaults)            // Size the table using given load factor only if within            // range of 0.25...4.0            float lf = Math.min(Math.max(0.25f, loadFactor), 4.0f);            float fc = (float)mappings / lf + 1.0f;            int cap = ((fc < DEFAULT_INITIAL_CAPACITY) ?                       DEFAULT_INITIAL_CAPACITY :                       (fc >= MAXIMUM_CAPACITY) ?                       MAXIMUM_CAPACITY :                       tableSizeFor((int)fc));            float ft = (float)cap * lf;            threshold = ((cap < MAXIMUM_CAPACITY && ft < MAXIMUM_CAPACITY) ?                         (int)ft : Integer.MAX_VALUE);            @SuppressWarnings({"rawtypes","unchecked"})                Node<K,V>[] tab = (Node<K,V>[])new Node[cap];            table = tab;            // Read the keys and values, and put the mappings in the HashMap            for (int i = 0; i < mappings; i++) {                @SuppressWarnings("unchecked")                    K key = (K) s.readObject();                @SuppressWarnings("unchecked")                    V value = (V) s.readObject();                putVal(hash(key), key, value, false, false);            }        }    }    /* ------------------------------------------------------------ */    // iterators    abstract class HashIterator {        Node<K,V> next;        // next entry to return        Node<K,V> current;     // current entry        int expectedModCount;  // for fast-fail        int index;             // current slot        HashIterator() {            expectedModCount = modCount;            Node<K,V>[] t = table;            current = next = null;            index = 0;            if (t != null && size > 0) { // advance to first entry                do {} while (index < t.length && (next = t[index++]) == null);            }        }        public final boolean hasNext() {            return next != null;        }        final Node<K,V> nextNode() {            Node<K,V>[] t;            Node<K,V> e = next;            if (modCount != expectedModCount)                throw new ConcurrentModificationException();            if (e == null)                throw new NoSuchElementException();            if ((next = (current = e).next) == null && (t = table) != null) {                do {} while (index < t.length && (next = t[index++]) == null);            }            return e;        }        public final void remove() {            Node<K,V> p = current;            if (p == null)                throw new IllegalStateException();            if (modCount != expectedModCount)                throw new ConcurrentModificationException();            current = null;            K key = p.key;            removeNode(hash(key), key, null, false, false);            expectedModCount = modCount;        }    }    final class KeyIterator extends HashIterator        implements Iterator<K> {        public final K next() { return nextNode().key; }    }    final class ValueIterator extends HashIterator        implements Iterator<V> {        public final V next() { return nextNode().value; }    }    final class EntryIterator extends HashIterator        implements Iterator<Map.Entry<K,V>> {        public final Map.Entry<K,V> next() { return nextNode(); }    }    /* ------------------------------------------------------------ */    // spliterators    static class HashMapSpliterator<K,V> {        final HashMap<K,V> map;        Node<K,V> current;          // current node        int index;                  // current index, modified on advance/split        int fence;                  // one past last index        int est;                    // size estimate        int expectedModCount;       // for comodification checks        HashMapSpliterator(HashMap<K,V> m, int origin,                           int fence, int est,                           int expectedModCount) {            this.map = m;            this.index = origin;            this.fence = fence;            this.est = est;            this.expectedModCount = expectedModCount;        }        final int getFence() { // initialize fence and size on first use            int hi;            if ((hi = fence) < 0) {                HashMap<K,V> m = map;                est = m.size;                expectedModCount = m.modCount;                Node<K,V>[] tab = m.table;                hi = fence = (tab == null) ? 0 : tab.length;            }            return hi;        }        public final long estimateSize() {            getFence(); // force init            return (long) est;        }    }    static final class KeySpliterator<K,V>        extends HashMapSpliterator<K,V>        implements Spliterator<K> {        KeySpliterator(HashMap<K,V> m, int origin, int fence, int est,                       int expectedModCount) {            super(m, origin, fence, est, expectedModCount);        }        public KeySpliterator<K,V> trySplit() {            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;            return (lo >= mid || current != null) ? null :                new KeySpliterator<>(map, lo, index = mid, est >>>= 1,                                        expectedModCount);        }        public void forEachRemaining(Consumer<? super K> action) {            int i, hi, mc;            if (action == null)                throw new NullPointerException();            HashMap<K,V> m = map;            Node<K,V>[] tab = m.table;            if ((hi = fence) < 0) {                mc = expectedModCount = m.modCount;                hi = fence = (tab == null) ? 0 : tab.length;            }            else                mc = expectedModCount;            if (tab != null && tab.length >= hi &&                (i = index) >= 0 && (i < (index = hi) || current != null)) {                Node<K,V> p = current;                current = null;                do {                    if (p == null)                        p = tab[i++];                    else {                        action.accept(p.key);                        p = p.next;                    }                } while (p != null || i < hi);                if (m.modCount != mc)                    throw new ConcurrentModificationException();            }        }        public boolean tryAdvance(Consumer<? super K> action) {            int hi;            if (action == null)                throw new NullPointerException();            Node<K,V>[] tab = map.table;            if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {                while (current != null || index < hi) {                    if (current == null)                        current = tab[index++];                    else {                        K k = current.key;                        current = current.next;                        action.accept(k);                        if (map.modCount != expectedModCount)                            throw new ConcurrentModificationException();                        return true;                    }                }            }            return false;        }        public int characteristics() {            return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |                Spliterator.DISTINCT;        }    }    static final class ValueSpliterator<K,V>        extends HashMapSpliterator<K,V>        implements Spliterator<V> {        ValueSpliterator(HashMap<K,V> m, int origin, int fence, int est,                         int expectedModCount) {            super(m, origin, fence, est, expectedModCount);        }        public ValueSpliterator<K,V> trySplit() {            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;            return (lo >= mid || current != null) ? null :                new ValueSpliterator<>(map, lo, index = mid, est >>>= 1,                                          expectedModCount);        }        public void forEachRemaining(Consumer<? super V> action) {            int i, hi, mc;            if (action == null)                throw new NullPointerException();            HashMap<K,V> m = map;            Node<K,V>[] tab = m.table;            if ((hi = fence) < 0) {                mc = expectedModCount = m.modCount;                hi = fence = (tab == null) ? 0 : tab.length;            }            else                mc = expectedModCount;            if (tab != null && tab.length >= hi &&                (i = index) >= 0 && (i < (index = hi) || current != null)) {                Node<K,V> p = current;                current = null;                do {                    if (p == null)                        p = tab[i++];                    else {                        action.accept(p.value);                        p = p.next;                    }                } while (p != null || i < hi);                if (m.modCount != mc)                    throw new ConcurrentModificationException();            }        }        public boolean tryAdvance(Consumer<? super V> action) {            int hi;            if (action == null)                throw new NullPointerException();            Node<K,V>[] tab = map.table;            if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {                while (current != null || index < hi) {                    if (current == null)                        current = tab[index++];                    else {                        V v = current.value;                        current = current.next;                        action.accept(v);                        if (map.modCount != expectedModCount)                            throw new ConcurrentModificationException();                        return true;                    }                }            }            return false;        }        public int characteristics() {            return (fence < 0 || est == map.size ? Spliterator.SIZED : 0);        }    }    static final class EntrySpliterator<K,V>        extends HashMapSpliterator<K,V>        implements Spliterator<Map.Entry<K,V>> {        EntrySpliterator(HashMap<K,V> m, int origin, int fence, int est,                         int expectedModCount) {            super(m, origin, fence, est, expectedModCount);        }        public EntrySpliterator<K,V> trySplit() {            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;            return (lo >= mid || current != null) ? null :                new EntrySpliterator<>(map, lo, index = mid, est >>>= 1,                                          expectedModCount);        }        public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {            int i, hi, mc;            if (action == null)                throw new NullPointerException();            HashMap<K,V> m = map;            Node<K,V>[] tab = m.table;            if ((hi = fence) < 0) {                mc = expectedModCount = m.modCount;                hi = fence = (tab == null) ? 0 : tab.length;            }            else                mc = expectedModCount;            if (tab != null && tab.length >= hi &&                (i = index) >= 0 && (i < (index = hi) || current != null)) {                Node<K,V> p = current;                current = null;                do {                    if (p == null)                        p = tab[i++];                    else {                        action.accept(p);                        p = p.next;                    }                } while (p != null || i < hi);                if (m.modCount != mc)                    throw new ConcurrentModificationException();            }        }        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {            int hi;            if (action == null)                throw new NullPointerException();            Node<K,V>[] tab = map.table;            if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {                while (current != null || index < hi) {                    if (current == null)                        current = tab[index++];                    else {                        Node<K,V> e = current;                        current = current.next;                        action.accept(e);                        if (map.modCount != expectedModCount)                            throw new ConcurrentModificationException();                        return true;                    }                }            }            return false;        }        public int characteristics() {            return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |                Spliterator.DISTINCT;        }    }    /* ------------------------------------------------------------ */    // LinkedHashMap support    /*     * The following package-protected methods are designed to be     * overridden by LinkedHashMap, but not by any other subclass.     * Nearly all other internal methods are also package-protected     * but are declared final, so can be used by LinkedHashMap, view     * classes, and HashSet.     */    // Create a regular (non-tree) node    Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) {        return new Node<>(hash, key, value, next);    }    // For conversion from TreeNodes to plain nodes    Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) {        return new Node<>(p.hash, p.key, p.value, next);    }    // Create a tree bin node    TreeNode<K,V> newTreeNode(int hash, K key, V value, Node<K,V> next) {        return new TreeNode<>(hash, key, value, next);    }    // For treeifyBin    TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {        return new TreeNode<>(p.hash, p.key, p.value, next);    }    /**     * Reset to initial default state.  Called by clone and readObject.     */    void reinitialize() {        table = null;        entrySet = null;        keySet = null;        values = null;        modCount = 0;        threshold = 0;        size = 0;    }    // Callbacks to allow LinkedHashMap post-actions    void afterNodeAccess(Node<K,V> p) { }    void afterNodeInsertion(boolean evict) { }    void afterNodeRemoval(Node<K,V> p) { }    // Called only from writeObject, to ensure compatible ordering.    void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException {        Node<K,V>[] tab;        if (size > 0 && (tab = table) != null) {            for (int i = 0; i < tab.length; ++i) {                for (Node<K,V> e = tab[i]; e != null; e = e.next) {                    s.writeObject(e.key);                    s.writeObject(e.value);                }            }        }    }    /* ------------------------------------------------------------ */    // Tree bins    /**     * Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn     * extends Node) so can be used as extension of either regular or     * linked node.     */    static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {        TreeNode<K,V> parent;  // red-black tree links        TreeNode<K,V> left;        TreeNode<K,V> right;        TreeNode<K,V> prev;    // needed to unlink next upon deletion        boolean red;        TreeNode(int hash, K key, V val, Node<K,V> next) {            super(hash, key, val, next);        }        /**         * Returns root of tree containing this node.         */        final TreeNode<K,V> root() {            for (TreeNode<K,V> r = this, p;;) {                if ((p = r.parent) == null)                    return r;                r = p;            }        }        /**         * Ensures that the given root is the first node of its bin.         */        static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) {            int n;            if (root != null && tab != null && (n = tab.length) > 0) {                int index = (n - 1) & root.hash;                TreeNode<K,V> first = (TreeNode<K,V>)tab[index];                if (root != first) {                    Node<K,V> rn;                    tab[index] = root;                    TreeNode<K,V> rp = root.prev;                    if ((rn = root.next) != null)                        ((TreeNode<K,V>)rn).prev = rp;                    if (rp != null)                        rp.next = rn;                    if (first != null)                        first.prev = root;                    root.next = first;                    root.prev = null;                }                assert checkInvariants(root);            }        }        /**         * Finds the node starting at root p with the given hash and key.         * The kc argument caches comparableClassFor(key) upon first use         * comparing keys.         */        final TreeNode<K,V> find(int h, Object k, Class<?> kc) {            TreeNode<K,V> p = this;            do {                int ph, dir; K pk;                TreeNode<K,V> pl = p.left, pr = p.right, q;                if ((ph = p.hash) > h)                    p = pl;                else if (ph < h)                    p = pr;                else if ((pk = p.key) == k || (k != null && k.equals(pk)))                    return p;                else if (pl == null)                    p = pr;                else if (pr == null)                    p = pl;                else if ((kc != null ||                          (kc = comparableClassFor(k)) != null) &&                         (dir = compareComparables(kc, k, pk)) != 0)                    p = (dir < 0) ? pl : pr;                else if ((q = pr.find(h, k, kc)) != null)                    return q;                else                    p = pl;            } while (p != null);            return null;        }        /**         * Calls find for root node.         */        final TreeNode<K,V> getTreeNode(int h, Object k) {            return ((parent != null) ? root() : this).find(h, k, null);        }        /**         * Tie-breaking utility for ordering insertions when equal         * hashCodes and non-comparable. We don't require a total         * order, just a consistent insertion rule to maintain         * equivalence across rebalancings. Tie-breaking further than         * necessary simplifies testing a bit.         */        static int tieBreakOrder(Object a, Object b) {            int d;            if (a == null || b == null ||                (d = a.getClass().getName().                 compareTo(b.getClass().getName())) == 0)                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?                     -1 : 1);            return d;        }        /**         * Forms tree of the nodes linked from this node.         * @return root of tree         */        final void treeify(Node<K,V>[] tab) {            TreeNode<K,V> root = null;            for (TreeNode<K,V> x = this, next; x != null; x = next) {                next = (TreeNode<K,V>)x.next;                x.left = x.right = null;                if (root == null) {                    x.parent = null;                    x.red = false;                    root = x;                }                else {                    K k = x.key;                    int h = x.hash;                    Class<?> kc = null;                    for (TreeNode<K,V> p = root;;) {                        int dir, ph;                        K pk = p.key;                        if ((ph = p.hash) > h)                            dir = -1;                        else if (ph < h)                            dir = 1;                        else if ((kc == null &&                                  (kc = comparableClassFor(k)) == null) ||                                 (dir = compareComparables(kc, k, pk)) == 0)                            dir = tieBreakOrder(k, pk);                        TreeNode<K,V> xp = p;                        if ((p = (dir <= 0) ? p.left : p.right) == null) {                            x.parent = xp;                            if (dir <= 0)                                xp.left = x;                            else                                xp.right = x;                            root = balanceInsertion(root, x);                            break;                        }                    }                }            }            moveRootToFront(tab, root);        }        /**         * Returns a list of non-TreeNodes replacing those linked from         * this node.         */        final Node<K,V> untreeify(HashMap<K,V> map) {            Node<K,V> hd = null, tl = null;            for (Node<K,V> q = this; q != null; q = q.next) {                Node<K,V> p = map.replacementNode(q, null);                if (tl == null)                    hd = p;                else                    tl.next = p;                tl = p;            }            return hd;        }        /**         * Tree version of putVal.         */        final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,                                       int h, K k, V v) {            Class<?> kc = null;            boolean searched = false;            TreeNode<K,V> root = (parent != null) ? root() : this;            for (TreeNode<K,V> p = root;;) {                int dir, ph; K pk;                if ((ph = p.hash) > h)                    dir = -1;                else if (ph < h)                    dir = 1;                else if ((pk = p.key) == k || (k != null && k.equals(pk)))                    return p;                else if ((kc == null &&                          (kc = comparableClassFor(k)) == null) ||                         (dir = compareComparables(kc, k, pk)) == 0) {                    if (!searched) {                        TreeNode<K,V> q, ch;                        searched = true;                        if (((ch = p.left) != null &&                             (q = ch.find(h, k, kc)) != null) ||                            ((ch = p.right) != null &&                             (q = ch.find(h, k, kc)) != null))                            return q;                    }                    dir = tieBreakOrder(k, pk);                }                TreeNode<K,V> xp = p;                if ((p = (dir <= 0) ? p.left : p.right) == null) {                    Node<K,V> xpn = xp.next;                    TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);                    if (dir <= 0)                        xp.left = x;                    else                        xp.right = x;                    xp.next = x;                    x.parent = x.prev = xp;                    if (xpn != null)                        ((TreeNode<K,V>)xpn).prev = x;                    moveRootToFront(tab, balanceInsertion(root, x));                    return null;                }            }        }        /**         * Removes the given node, that must be present before this call.         * This is messier than typical red-black deletion code because we         * cannot swap the contents of an interior node with a leaf         * successor that is pinned by "next" pointers that are accessible         * independently during traversal. So instead we swap the tree         * linkages. If the current tree appears to have too few nodes,         * the bin is converted back to a plain bin. (The test triggers         * somewhere between 2 and 6 nodes, depending on tree structure).         */        final void removeTreeNode(HashMap<K,V> map, Node<K,V>[] tab,                                  boolean movable) {            int n;            if (tab == null || (n = tab.length) == 0)                return;            int index = (n - 1) & hash;            TreeNode<K,V> first = (TreeNode<K,V>)tab[index], root = first, rl;            TreeNode<K,V> succ = (TreeNode<K,V>)next, pred = prev;            if (pred == null)                tab[index] = first = succ;            else                pred.next = succ;            if (succ != null)                succ.prev = pred;            if (first == null)                return;            if (root.parent != null)                root = root.root();            if (root == null || root.right == null ||                (rl = root.left) == null || rl.left == null) {                tab[index] = first.untreeify(map);  // too small                return;            }            TreeNode<K,V> p = this, pl = left, pr = right, replacement;            if (pl != null && pr != null) {                TreeNode<K,V> s = pr, sl;                while ((sl = s.left) != null) // find successor                    s = sl;                boolean c = s.red; s.red = p.red; p.red = c; // swap colors                TreeNode<K,V> sr = s.right;                TreeNode<K,V> pp = p.parent;                if (s == pr) { // p was s's direct parent                    p.parent = s;                    s.right = p;                }                else {                    TreeNode<K,V> sp = s.parent;                    if ((p.parent = sp) != null) {                        if (s == sp.left)                            sp.left = p;                        else                            sp.right = p;                    }                    if ((s.right = pr) != null)                        pr.parent = s;                }                p.left = null;                if ((p.right = sr) != null)                    sr.parent = p;                if ((s.left = pl) != null)                    pl.parent = s;                if ((s.parent = pp) == null)                    root = s;                else if (p == pp.left)                    pp.left = s;                else                    pp.right = s;                if (sr != null)                    replacement = sr;                else                    replacement = p;            }            else if (pl != null)                replacement = pl;            else if (pr != null)                replacement = pr;            else                replacement = p;            if (replacement != p) {                TreeNode<K,V> pp = replacement.parent = p.parent;                if (pp == null)                    root = replacement;                else if (p == pp.left)                    pp.left = replacement;                else                    pp.right = replacement;                p.left = p.right = p.parent = null;            }            TreeNode<K,V> r = p.red ? root : balanceDeletion(root, replacement);            if (replacement == p) {  // detach                TreeNode<K,V> pp = p.parent;                p.parent = null;                if (pp != null) {                    if (p == pp.left)                        pp.left = null;                    else if (p == pp.right)                        pp.right = null;                }            }            if (movable)                moveRootToFront(tab, r);        }        /**         * Splits nodes in a tree bin into lower and upper tree bins,         * or untreeifies if now too small. Called only from resize;         * see above discussion about split bits and indices.         *         * @param map the map         * @param tab the table for recording bin heads         * @param index the index of the table being split         * @param bit the bit of hash to split on         */        final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {            TreeNode<K,V> b = this;            // Relink into lo and hi lists, preserving order            TreeNode<K,V> loHead = null, loTail = null;            TreeNode<K,V> hiHead = null, hiTail = null;            int lc = 0, hc = 0;            for (TreeNode<K,V> e = b, next; e != null; e = next) {                next = (TreeNode<K,V>)e.next;                e.next = null;                if ((e.hash & bit) == 0) {                    if ((e.prev = loTail) == null)                        loHead = e;                    else                        loTail.next = e;                    loTail = e;                    ++lc;                }                else {                    if ((e.prev = hiTail) == null)                        hiHead = e;                    else                        hiTail.next = e;                    hiTail = e;                    ++hc;                }            }            if (loHead != null) {                if (lc <= UNTREEIFY_THRESHOLD)                    tab[index] = loHead.untreeify(map);                else {                    tab[index] = loHead;                    if (hiHead != null) // (else is already treeified)                        loHead.treeify(tab);                }            }            if (hiHead != null) {                if (hc <= UNTREEIFY_THRESHOLD)                    tab[index + bit] = hiHead.untreeify(map);                else {                    tab[index + bit] = hiHead;                    if (loHead != null)                        hiHead.treeify(tab);                }            }        }        /* ------------------------------------------------------------ */        // Red-black tree methods, all adapted from CLR        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,                                              TreeNode<K,V> p) {            TreeNode<K,V> r, pp, rl;            if (p != null && (r = p.right) != null) {                if ((rl = p.right = r.left) != null)                    rl.parent = p;                if ((pp = r.parent = p.parent) == null)                    (root = r).red = false;                else if (pp.left == p)                    pp.left = r;                else                    pp.right = r;                r.left = p;                p.parent = r;            }            return root;        }        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,                                               TreeNode<K,V> p) {            TreeNode<K,V> l, pp, lr;            if (p != null && (l = p.left) != null) {                if ((lr = p.left = l.right) != null)                    lr.parent = p;                if ((pp = l.parent = p.parent) == null)                    (root = l).red = false;                else if (pp.right == p)                    pp.right = l;                else                    pp.left = l;                l.right = p;                p.parent = l;            }            return root;        }        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,                                                    TreeNode<K,V> x) {            x.red = true;            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {                if ((xp = x.parent) == null) {                    x.red = false;                    return x;                }                else if (!xp.red || (xpp = xp.parent) == null)                    return root;                if (xp == (xppl = xpp.left)) {                    if ((xppr = xpp.right) != null && xppr.red) {                        xppr.red = false;                        xp.red = false;                        xpp.red = true;                        x = xpp;                    }                    else {                        if (x == xp.right) {                            root = rotateLeft(root, x = xp);                            xpp = (xp = x.parent) == null ? null : xp.parent;                        }                        if (xp != null) {                            xp.red = false;                            if (xpp != null) {                                xpp.red = true;                                root = rotateRight(root, xpp);                            }                        }                    }                }                else {                    if (xppl != null && xppl.red) {                        xppl.red = false;                        xp.red = false;                        xpp.red = true;                        x = xpp;                    }                    else {                        if (x == xp.left) {                            root = rotateRight(root, x = xp);                            xpp = (xp = x.parent) == null ? null : xp.parent;                        }                        if (xp != null) {                            xp.red = false;                            if (xpp != null) {                                xpp.red = true;                                root = rotateLeft(root, xpp);                            }                        }                    }                }            }        }        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,                                                   TreeNode<K,V> x) {            for (TreeNode<K,V> xp, xpl, xpr;;)  {                if (x == null || x == root)                    return root;                else if ((xp = x.parent) == null) {                    x.red = false;                    return x;                }                else if (x.red) {                    x.red = false;                    return root;                }                else if ((xpl = xp.left) == x) {                    if ((xpr = xp.right) != null && xpr.red) {                        xpr.red = false;                        xp.red = true;                        root = rotateLeft(root, xp);                        xpr = (xp = x.parent) == null ? null : xp.right;                    }                    if (xpr == null)                        x = xp;                    else {                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;                        if ((sr == null || !sr.red) &&                            (sl == null || !sl.red)) {                            xpr.red = true;                            x = xp;                        }                        else {                            if (sr == null || !sr.red) {                                if (sl != null)                                    sl.red = false;                                xpr.red = true;                                root = rotateRight(root, xpr);                                xpr = (xp = x.parent) == null ?                                    null : xp.right;                            }                            if (xpr != null) {                                xpr.red = (xp == null) ? false : xp.red;                                if ((sr = xpr.right) != null)                                    sr.red = false;                            }                            if (xp != null) {                                xp.red = false;                                root = rotateLeft(root, xp);                            }                            x = root;                        }                    }                }                else { // symmetric                    if (xpl != null && xpl.red) {                        xpl.red = false;                        xp.red = true;                        root = rotateRight(root, xp);                        xpl = (xp = x.parent) == null ? null : xp.left;                    }                    if (xpl == null)                        x = xp;                    else {                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;                        if ((sl == null || !sl.red) &&                            (sr == null || !sr.red)) {                            xpl.red = true;                            x = xp;                        }                        else {                            if (sl == null || !sl.red) {                                if (sr != null)                                    sr.red = false;                                xpl.red = true;                                root = rotateLeft(root, xpl);                                xpl = (xp = x.parent) == null ?                                    null : xp.left;                            }                            if (xpl != null) {                                xpl.red = (xp == null) ? false : xp.red;                                if ((sl = xpl.left) != null)                                    sl.red = false;                            }                            if (xp != null) {                                xp.red = false;                                root = rotateRight(root, xp);                            }                            x = root;                        }                    }                }            }        }        /**         * Recursive invariant check         */        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,                tb = t.prev, tn = (TreeNode<K,V>)t.next;            if (tb != null && tb.next != t)                return false;            if (tn != null && tn.prev != t)                return false;            if (tp != null && t != tp.left && t != tp.right)                return false;            if (tl != null && (tl.parent != t || tl.hash > t.hash))                return false;            if (tr != null && (tr.parent != t || tr.hash < t.hash))                return false;            if (t.red && tl != null && tl.red && tr != null && tr.red)                return false;            if (tl != null && !checkInvariants(tl))                return false;            if (tr != null && !checkInvariants(tr))                return false;            return true;        }    }}


发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表