首页 > 学院 > 开发设计 > 正文

Lock与synchronized测试区别

2019-11-06 07:08:51
字体:
来源:转载
供稿:网友

原文:http://www.cnblogs.com/nsw2018/p/5821738.html

1、ReentrantLock 拥有Synchronized相同的并发性和内存语义,此外还多了 锁投票,定时锁等候和中断锁等候线程A和B都要获取对象O的锁定,假设A获取了对象O锁,B将等待A释放对O的锁定,如果使用 synchronized ,如果A不释放,B将一直等下去,不能被中断如果 使用ReentrantLock,如果A不释放,可以使B在等待了足够长的时间以后,中断等待,而干别的事情ReentrantLock获取锁定与三种方式:a) lock(), 如果获取了锁立即返回,如果别的线程持有锁,当前线程则一直处于休眠状态,直到获取锁b) tryLock(), 如果获取了锁立即返回true,如果别的线程正持有锁,立即返回false;c)tryLock(long timeout,TimeUnit unit), 如果获取了锁定立即返回true,如果别的线程正持有锁,会等待参数给定的时间,在等待的过程中,如果获取了锁定,就返回true,如果等待超时,返回false;d) lockInterruptibly:如果获取了锁定立即返回,如果没有获取锁定,当前线程处于休眠状态,直到或者锁定,或者当前线程被别的线程中断2、synchronized是在JVM层面上实现的,不但可以通过一些监控工具监控synchronized的锁定,而且在代码执行时出现异常,JVM会自动释放锁定,但是使用Lock则不行,lock是通过代码实现的,要保证锁定一定会被释放,就必须将unLock()放到finally{}中3、在资源竞争不是很激烈的情况下,Synchronized的性能要优于ReetrantLock,但是在资源竞争很激烈的情况下,Synchronized的性能会下降几十倍,但是ReetrantLock的性能能维持常态;

5.0的多线程任务包对于同步的性能方面有了很大的改进,在原有synchronized关键字的基础上,又增加了ReentrantLock,以及各种Atomic类。了解其性能的优劣程度,有助与我们在特定的情形下做出正确的选择。

总体的结论先摆出来:

synchronized: 在资源竞争不是很激烈的情况下,偶尔会有同步的情形下,synchronized是很合适的。原因在于,编译程序通常会尽可能的进行优化synchronize,另外可读性非常好,不管用没用过5.0多线程包的程序员都能理解。

ReentrantLock: ReentrantLock提供了多样化的同步,比如有时间限制的同步,可以被Interrupt的同步(synchronized的同步是不能Interrupt的)等。在资源竞争不激烈的情形下,性能稍微比synchronized差点点。但是当同步非常激烈的时候,synchronized的性能一下子能下降好几十倍。而ReentrantLock确还能维持常态。

Atomic: 和上面的类似,不激烈情况下,性能比synchronized略逊,而激烈的时候,也能维持常态。激烈的时候,Atomic的性能会优于ReentrantLock一倍左右。但是其有一个缺点,就是只能同步一个值,一段代码中只能出现一个Atomic的变量,多于一个同步无效。因为他不能在多个Atomic之间同步。

所以,我们写同步的时候,优先考虑synchronized,如果有特殊需要,再进一步优化。ReentrantLock和Atomic如果用的不好,不仅不能提高性能,还可能带来灾难。

先贴测试结果:再贴代码(Atomic测试代码不准确,一个同步中只能有1个Actomic,这里用了2个,但是这里的测试只看速度) ========================== round:100000 thread:5 Sync = 35301694 Lock = 56255753 Atom = 43467535 ========================== round:200000 thread:10 Sync = 110514604 Lock = 204235455 Atom = 170535361 ========================== round:300000 thread:15 Sync = 253123791 Lock = 448577123 Atom = 362797227 ========================== round:400000 thread:20 Sync = 16562148262 Lock = 846454786 Atom = 667947183 ========================== round:500000 thread:25 Sync = 26932301731 Lock = 1273354016 Atom = 982564544

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189package test.thread; import static java.lang.System.out; import java.util.Random;import java.util.concurrent.BrokenBarrierException;import java.util.concurrent.CyclicBarrier;import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;import java.util.concurrent.atomic.AtomicInteger;import java.util.concurrent.atomic.AtomicLong;import java.util.concurrent.locks.ReentrantLock; public class TestSyncMethods {         publicstaticvoid test(intround,intthreadNum,CyclicBarrier cyclicBarrier){        newSyncTest("Sync",round,threadNum,cyclicBarrier).testTime();        newLockTest("Lock",round,threadNum,cyclicBarrier).testTime();        newAtomicTest("Atom",round,threadNum,cyclicBarrier).testTime();    }     publicstaticvoid main(String args[]){                 for(inti=0;i<5;i++){            intround=100000*(i+1);            intthreadNum=5*(i+1);            CyclicBarrier cb=newCyclicBarrier(threadNum*2+1);            out.PRintln("==========================");            out.println("round:"+round+" thread:"+threadNum);            test(round,threadNum,cb);                     }    }} class SyncTest extends TestTemplate{    publicSyncTest(String _id,int_round,int_threadNum,CyclicBarrier _cb){        super( _id, _round, _threadNum, _cb);    }    @Override    /**     * synchronized关键字不在方法签名里面,所以不涉及重载问题     */    synchronizedlong getValue() {        returnsuper.countValue;    }    @Override    synchronizedvoid sumValue() {        super.countValue+=preInit[index++%round];    }}  class LockTest extends TestTemplate{    ReentrantLock lock=newReentrantLock();    publicLockTest(String _id,int_round,int_threadNum,CyclicBarrier _cb){        super( _id, _round, _threadNum, _cb);    }    /**     * synchronized关键字不在方法签名里面,所以不涉及重载问题     */    @Override    longgetValue() {        try{            lock.lock();            returnsuper.countValue;        }finally{            lock.unlock();        }    }    @Override    voidsumValue() {        try{            lock.lock();            super.countValue+=preInit[index++%round];        }finally{            lock.unlock();        }    }}  class AtomicTest extends TestTemplate{    publicAtomicTest(String _id,int_round,int_threadNum,CyclicBarrier _cb){        super( _id, _round, _threadNum, _cb);    }    @Override    /**     * synchronized关键字不在方法签名里面,所以不涉及重载问题     */    long getValue() {        returnsuper.countValueAtmoic.get();    }    @Override    void sumValue() {        super.countValueAtmoic.addAndGet(super.preInit[indexAtomic.get()%round]);    }}abstractclassTestTemplate{    privateString id;    protectedintround;    privateintthreadNum;    protectedlongcountValue;    protectedAtomicLong countValueAtmoic=newAtomicLong(0);    protectedint[] preInit;    protectedintindex;    protectedAtomicInteger indexAtomic=newAtomicInteger(0);    Random r=newRandom(47);    //任务栅栏,同批任务,先到达wait的任务挂起,一直等到全部任务到达制定的wait地点后,才能全部唤醒,继续执行    privateCyclicBarrier cb;    publicTestTemplate(String _id,int_round,int_threadNum,CyclicBarrier _cb){        this.id=_id;        this.round=_round;        this.threadNum=_threadNum;        cb=_cb;        preInit=newint[round];        for(inti=0;i<preInit.length;i++){            preInit[i]=r.nextInt(100);        }    }         abstractvoidsumValue();    /*     * 对long的操作是非原子的,原子操作只针对32位     * long是64位,底层操作的时候分2个32位读写,因此不是线程安全     */    abstractlonggetValue();     publicvoidtestTime(){        ExecutorService se=Executors.newCachedThreadPool();        longstart=System.nanoTime();        //同时开启2*ThreadNum个数的读写线程        for(inti=0;i<threadNum;i++){            se.execute(newRunnable(){                publicvoidrun() {                    for(inti=0;i<round;i++){                        sumValue();                    }                     //每个线程执行完同步方法后就等待                    try{                        cb.await();                    }catch(InterruptedException e) {                        // TODO Auto-generated catch block                        e.printStackTrace();                    }catch(BrokenBarrierException e) {                        // TODO Auto-generated catch block                        e.printStackTrace();                    }                  }            });            se.execute(newRunnable(){                publicvoidrun() {                     getValue();                    try{                        //每个线程执行完同步方法后就等待                        cb.await();                    }catch(InterruptedException e) {                        // TODO Auto-generated catch block                        e.printStackTrace();                    }catch(BrokenBarrierException e) {                        // TODO Auto-generated catch block                        e.printStackTrace();                    }                 }            });        }                 try{            //当前统计线程也wait,所以CyclicBarrier的初始值是threadNum*2+1            cb.await();        }catch(InterruptedException e) {            // TODO Auto-generated catch block            e.printStackTrace();        }catch(BrokenBarrierException e) {            // TODO Auto-generated catch block            e.printStackTrace();        }        //所有线程执行完成之后,才会跑到这一步        longduration=System.nanoTime()-start;        out.println(id+" = "+duration);             } }

  

 

 

 

摘自:

http://houlinyan.iteye.com/blog/1112535

http://zzhonghe.iteye.com/blog/826162


上一篇:hbase rowkey设计

下一篇:c#中取整

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表