首页 > 学院 > 开发设计 > 正文

完成一个简单的时间片轮转多道程序内核代码

2019-11-06 07:10:30
字体:
来源:转载
供稿:网友

章强 + 原创作品转载请注明出处 + 《linux内核分析》MOOC课程http://mooc.study.163.com/course/USTC-1000029000

实验截图

使用实验楼的虚拟机打开shell ,输入指令 1.cd LinuxKernel/linux-3.9.4 2.qemu -kernel arch/x86/boot/bzImage 然后cd mykernel 可以看到qemu窗口输出的内容的代码mymain.c和myinterrupt.c

mymain.c:内核从这里启动,从这个函数开始运行并无限循环

void __init my_start_kernel(void){ int i = 0; while(1) { i++; if(i%100000 == 0) PRintk(KERN_NOTICE "my_start_kernel here %d /n",i); }}

myinterrupt.c:由内核周期性调用,从而产生一个周期性的中断机制

void my_timer_handler(void){ printk(KERN_NOTICE "/n>>>>>>>>>>>>>>>>>my_timer_handler here<<<<<<<<<<<<<<<<<</n/n");}

然后修改内核代码,使之成为一个简单的时间片轮转多道程序内核,然后重新编译运行,从https://github.com/mengning/mykernel下载代码替换mykernel中的mymain.c和myinterrupt.c,mypuc.h也放在该文件夹下。接下来在shell中将工作目录退回到home/shiyanlou/LinuxKernel/linux-3.9.4/ 然后执行make,重新编译

这里写图片描述

然后再次输入:qemu -kernel arch/x86/boot/bzImage 启动内核执行结果如下 这里写图片描述 从上图中可以看到进程的切换过程:在0号进程运行过程中,先是my_timer_handler()被执行,然后执行myschedule(),myschedule()在运行过程中输出switch 0(被切换出去的进程号) to 1(切换到的进程号)。然后就跳到新的进程1继续执行。

代码分析

mypcb.h

/* * linux/mykernel/mypcb.h * * Kernel internal PCB types * * Copyright (C) 2013 Mengning * */#define MAX_TASK_NUM 4 //最大进程数#define KERNEL_STACK_SIZE 1024*2 # unsigned long/* CPU-specific state of this task */struct Thread { unsigned long ip;//进程的eip unsigned long sp;//进程的esp};typedef struct PCB{ int pid;//进程id volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ //进程的状态 unsigned long stack[KERNEL_STACK_SIZE];//进程的栈 /* CPU-specific state of this task */ struct Thread thread;//每个进程只有一个线程 unsigned long task_entry;//进程起始入口地址 struct PCB *next;//指向下一个进程的指针}tPCB;void my_schedule(void);

mymain.c

/* * linux/mykernel/mymain.c * * Kernel internal my_start_kernel * * Copyright (C) 2013 Mengning * */#include <linux/types.h>#include <linux/string.h>#include <linux/ctype.h>#include <linux/tty.h>#include <linux/vmalloc.h>#include "mypcb.h"tPCB task[MAX_TASK_NUM];tPCB * my_current_task = NULL;volatile int my_need_sched = 0;void my_process(void);void __init my_start_kernel(void){ int pid = 0; int i; /* Initialize process 0*/ task[pid].pid = pid; task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */ task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;//0号进程的入口地址为my_process() task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];//0号进程的栈顶为stack[]数组的最后一个元素 task[pid].next = &task[pid];//next指针指向自己 /*fork more process */ for(i=1;i<MAX_TASK_NUM;i++)//产生几个编号不同的进程 { memcpy(&task[i],&task[0],sizeof(tPCB)); task[i].pid = i; task[i].thread.sp = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1]; *(task[i].thread.sp - 1) = task[i].thread.sp; task[i].thread.sp -= 1; task[i].next = task[i-1].next;新建的进程next指针指向0号进程首地址 task[i-1].next = &task[i];//前一个进程的next指向新创建的进程首地址,形成一个循环链表 } /* start process 0 by task[0] */ pid = 0; my_current_task = &task[pid];//当前运行的进程设置为0号进程 asm volatile( "movl %1,%%esp/n/t" /* set task[pid].thread.sp to esp */ "pushl %1/n/t" /* push ebp */ "pushl %0/n/t" /* push task[pid].thread.ip */ "ret/n/t" /* pop task[pid].thread.ip to eip */ "popl %%ebp/n/t" : : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp) /* input c or d mean %ecx/%edx*/ );} void my_process(void){ int i = 0; while(1) { i++; if(i%10000000 == 0) { printk(KERN_NOTICE "this is process %d -/n",my_current_task->pid); if(my_need_sched == 1) { my_need_sched = 0; my_schedule(); } printk(KERN_NOTICE "this is process %d +/n",my_current_task->pid); } }}

myinterrupt.c

/* * linux/mykernel/myinterrupt.c * * Kernel internal my_timer_handler * * Copyright (C) 2013 Mengning * */#include <linux/types.h>#include <linux/string.h>#include <linux/ctype.h>#include <linux/tty.h>#include <linux/vmalloc.h>#include "mypcb.h"extern tPCB task[MAX_TASK_NUM];extern tPCB * my_current_task;extern volatile int my_need_sched;volatile int time_count = 0;/* * Called by timer interrupt. * it runs in the name of current running process, * so it use kernel stack of current running process */void my_timer_handler(void){#if 1 if(time_count%1000 == 0 && my_need_sched != 1) { printk(KERN_NOTICE ">>>my_timer_handler here<<</n"); my_need_sched = 1; } time_count ++ ; #endif return; }void my_schedule(void){ tPCB * next; tPCB * prev; if(my_current_task == NULL || my_current_task->next == NULL) { return; } printk(KERN_NOTICE ">>>my_schedule<<</n"); /* schedule */ next = my_current_task->next; prev = my_current_task; if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */ { my_current_task = next; printk(KERN_NOTICE ">>>switch %d to %d<<</n",prev->pid,next->pid); /* switch to next process */ asm volatile( "pushl %%ebp/n/t" /* save ebp 保存当前进程的ebp*/ "movl %%esp,%0/n/t" /* save esp 保存当前进程的esp*/ "movl %2,%%esp/n/t" /* restore esp 由next->thread.sp存入下一个进程的esp*/ "movl $1f,%1/n/t" /* save eip 下一个进程的eip设置为1f,$1f指标号1:的代码在内存中的地址*/ "pushl %3/n/t" /* 将next->thread.ip压入当前进程的栈*/ "ret/n/t" /* restore eip 弹出上一进程的eip进行进程切换*/ "1:/t" /* next process start here 即$1f指向的地址*/ "popl %%ebp/n/t" /* ebp出栈*/ : "=m" (prev->thread.sp),"=m" (prev->thread.ip) : "m" (next->thread.sp),"m" (next->thread.ip) ); } return; }

总结

操作系统的内核有一个起始点,进程从某个点开始执行,在初始化等操作后,如分配内存等,cpu分配给第一个进程执行进程,等到系统所采用的进程调度算法将该进程阻塞后,发生中断,保护现场,cpu执行下一个进程,这样cpu就完成了进程的调度。


发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表