Your scores: [[-0.81233741 -1.27654624 -0.70335995] [-0.17129677 -1.18803311 -0.47310444] [-0.51590475 -1.01354314 -0.8504215 ] [-0.15419291 -0.48629638 -0.52901952] [-0.00618733 -0.12435261 -0.15226949]]
correct scores: [[-0.81233741 -1.27654624 -0.70335995] [-0.17129677 -1.18803311 -0.47310444] [-0.51590475 -1.01354314 -0.8504215 ] [-0.15419291 -0.48629638 -0.52901952] [-0.00618733 -0.12435261 -0.15226949]]
Difference between your scores and correct scores: 3.68027204961e-08
Difference between your loss and correct loss: 1.79412040779e-13
W1 max relative error: 3.669858e-09 W2 max relative error: 3.440708e-09 b2 max relative error: 3.865039e-11 b1 max relative error: 1.125423e-09
Final training loss: 0.0171496079387
Train data shape: (49000, 3072) Train labels shape: (49000,) Validation data shape: (1000, 3072) Validation labels shape: (1000,) Test data shape: (1000, 3072) Test labels shape: (1000,)
iteration 0 / 1000: loss 2.302970 iteration 100 / 1000: loss 2.302474 iteration 200 / 1000: loss 2.297076 iteration 300 / 1000: loss 2.257328 iteration 400 / 1000: loss 2.230484 iteration 500 / 1000: loss 2.150620 iteration 600 / 1000: loss 2.080736 iteration 700 / 1000: loss 2.054914 iteration 800 / 1000: loss 1.979290 iteration 900 / 1000: loss 2.039101 Validation accuracy: 0.287
current training hidden_size: 400 current training learning_rate: 0.003 current training reg: 0.02 current training batch_size: 500 iteration 0 / 1200: loss 2.302670 iteration 100 / 1200: loss 1.685716 iteration 200 / 1200: loss 1.599757 iteration 300 / 1200: loss 1.385544 iteration 400 / 1200: loss 1.479385 iteration 500 / 1200: loss 1.466029 iteration 600 / 1200: loss 1.456854 iteration 700 / 1200: loss 1.309732 iteration 800 / 1200: loss 1.236479 iteration 900 / 1200: loss 1.221071 iteration 1000 / 1200: loss 1.210234 iteration 1100 / 1200: loss 1.123294 current val_acc: 0.5
best_acc: 0.5 best hidden_size: 400 best learning_rate: 0.003 best reg: 0.02 best batch_size: 500
current training hidden_size: 400 current training learning_rate: 0.003 current training reg: 0.05 current training batch_size: 500 iteration 0 / 1200: loss 2.302935 iteration 100 / 1200: loss 1.693358 iteration 200 / 1200: loss 1.509740 iteration 300 / 1200: loss 1.572148 iteration 400 / 1200: loss 1.495700 iteration 500 / 1200: loss 1.400046 iteration 600 / 1200: loss 1.370000 iteration 700 / 1200: loss 1.249708 iteration 800 / 1200: loss 1.305766 iteration 900 / 1200: loss 1.342539 iteration 1000 / 1200: loss 1.277757 iteration 1100 / 1200: loss 1.232157 current val_acc: 0.512
best_acc: 0.512 best hidden_size: 400 best learning_rate: 0.003 best reg: 0.05 best batch_size: 500
current training hidden_size: 400 current training learning_rate: 0.003 current training reg: 0.1 current training batch_size: 500 iteration 0 / 1200: loss 2.303187 iteration 100 / 1200: loss 1.815929 iteration 200 / 1200: loss 1.736408 iteration 300 / 1200: loss 1.503271 iteration 400 / 1200: loss 1.571691 iteration 500 / 1200: loss 1.474189 iteration 600 / 1200: loss 1.478976 iteration 700 / 1200: loss 1.355830 iteration 800 / 1200: loss 1.261623 iteration 900 / 1200: loss 1.272220 iteration 1000 / 1200: loss 1.303129 iteration 1100 / 1200: loss 1.320341 current val_acc: 0.517
best_acc: 0.517 best hidden_size: 400 best learning_rate: 0.003 best reg: 0.1 best batch_size: 500
新闻热点
疑难解答