Training data shape: (50000, 32, 32, 3) Training labels shape: (50000,) Test data shape: (10000, 32, 32, 3) Test labels shape: (10000,)
Train data shape: (49000, 32, 32, 3) Train labels shape: (49000,) Validation data shape: (1000, 32, 32, 3) Validation labels shape: (1000,) Test data shape: (1000, 32, 32, 3) Test labels shape: (1000,)
Training data shape: (49000, 3072) Validation data shape: (1000, 3072) Test data shape: (1000, 3072) dev data shape: (500, 3072)
[ 130.64189796 135.98173469 132.47391837 130.05569388 135.34804082 131.75402041 130.96055102 136.14328571 132.47636735 131.48467347]
(49000, 3073) (1000, 3073) (1000, 3073) (500, 3073)
loss: 9.321169 numerical: -28.975654 analytic: -28.995244, relative error: 3.379303e-04 numerical: 48.866697 analytic: 48.866697, relative error: 6.274050e-12 numerical: 16.762563 analytic: 16.762563, relative error: 1.353703e-11 numerical: 51.719000 analytic: 51.719000, relative error: 5.419848e-13 numerical: 34.657653 analytic: 34.657653, relative error: 2.774503e-12 numerical: -12.155716 analytic: -12.155716, relative error: 4.110508e-11 numerical: 1.544919 analytic: 1.510942, relative error: 1.111887e-02 numerical: 12.871566 analytic: 12.854885, relative error: 6.484290e-04 numerical: -47.174364 analytic: -47.174364, relative error: 7.444645e-12 numerical: -0.466306 analytic: -0.443806, relative error: 2.472205e-02 numerical: -4.083085 analytic: -4.083085, relative error: 1.109454e-10 numerical: 13.340045 analytic: 13.340045, relative error: 3.587123e-12 numerical: 0.861528 analytic: 0.861528, relative error: 4.376815e-10 numerical: 8.238503 analytic: 8.238503, relative error: 2.420306e-11 numerical: 5.651986 analytic: 5.712372, relative error: 5.313629e-03 numerical: -13.594373 analytic: -13.594373, relative error: 1.605655e-12 numerical: -11.023395 analytic: -11.023395, relative error: 3.846707e-11 numerical: -25.628873 analytic: -25.628873, relative error: 1.589220e-11 numerical: -10.922934 analytic: -10.922934, relative error: 1.864324e-11 numerical: -6.793161 analytic: -6.793161, relative error: 2.469798e-11
Naive loss: 9.321169e+00 computed in 0.138057s Vectorized loss: 9.321169e+00 computed in 0.006166s difference: -0.000000
Naive loss and gradient: computed in 0.144088s (500, 10) (500,) Vectorized loss and gradient: computed in 0.005354s difference: 0.000000
iteration 0 / 1500: loss 789.956929 iteration 100 / 1500: loss 286.957111 iteration 200 / 1500: loss 108.054238 iteration 300 / 1500: loss 42.851563 iteration 400 / 1500: loss 18.755515 iteration 500 / 1500: loss 10.476052 iteration 600 / 1500: loss 7.454007 iteration 700 / 1500: loss 5.941640 iteration 800 / 1500: loss 5.516817 iteration 900 / 1500: loss 5.062649 iteration 1000 / 1500: loss 5.504820 iteration 1100 / 1500: loss 4.991620 iteration 1200 / 1500: loss 5.268961 iteration 1300 / 1500: loss 5.576416 iteration 1400 / 1500: loss 5.379530 That took 7.905974s training accuracy: 0.369796 validation accuracy: 0.378000
iteration 0 / 1500: loss 799.779545 iteration 100 / 1500: loss 292.351218 iteration 200 / 1500: loss 110.462690 iteration 300 / 1500: loss 43.564036 iteration 400 / 1500: loss 18.821538 iteration 500 / 1500: loss 10.338367 iteration 600 / 1500: loss 6.433465 iteration 700 / 1500: loss 6.566043 iteration 800 / 1500: loss 5.455641 iteration 900 / 1500: loss 5.246358 iteration 1000 / 1500: loss 5.279144 iteration 1100 / 1500: loss 5.268271 iteration 1200 / 1500: loss 5.012111 iteration 1300 / 1500: loss 5.404834 iteration 1400 / 1500: loss 5.478970 iteration 0 / 1500: loss 1574.778009 iteration 100 / 1500: loss 213.106899 iteration 200 / 1500: loss 32.626224 iteration 300 / 1500: loss 9.114379 iteration 400 / 1500: loss 6.495307 iteration 500 / 1500: loss 5.586557 iteration 600 / 1500: loss 5.680854 iteration 700 / 1500: loss 5.040575 iteration 800 / 1500: loss 5.680529 iteration 900 / 1500: loss 5.605016 iteration 1000 / 1500: loss 5.837396 iteration 1100 / 1500: loss 6.054111 iteration 1200 / 1500: loss 5.478108 iteration 1300 / 1500: loss 5.388771 iteration 1400 / 1500: loss 5.892955 iteration 0 / 1500: loss 786.731296 iteration 100 / 1500: loss 372589076869931435404747201187846029312.000000 iteration 200 / 1500: loss 61585990370051785004894134177410779318588604347968448883358878335248629760.000000 iteration 300 / 1500: loss 10179670970827104896078110321806246284423900004611290427100234052002452305363258503118939368480524451094462464.000000 iteration 400 / 1500: loss 1682618083295312148842471678978817759687110901366742347187448625071896880179190059955444785031475508580320163065249167013728902881310179493675008.000000 iteration 500 / 1500: loss 278123293213115722097370059754842829514103165147861980829003262265728581496311930776975905372498693007340822399276312865583191924009540020841611894514427147986789234274277083054080.000000 iteration 600 / 1500: loss 45971552900595313116772029731775298161615086412875563312473746890148851650899554535727913980317513350595229797846942222378439358912489297030041266226299675735950339247033183711929521823440364030454612383616670367744.000000 iteration 700 / 1500: loss 7598729511924862306843869847719811454111134463928988065576103889726492053689774080742626421156473555706227478414125142862484512009972445834660067689802748525182554256062059845298727089565150119555369117525512481723395132169001343612422471248716496896.000000 iteration 800 / 1500: loss 1256009130695476514042065188895708694386167197150478807130575071941587750791985204332778572941545839167934144338508622733642684600438543354626241487711673204846488733859201229622235768049134329587590947446520585586993428750974636359652013290906599124339943647917297088091449884107866112.000000 iteration 900 / 1500: loss inf iteration 1000 / 1500: loss inf iteration 1100 / 1500: loss inf iteration 1200 / 1500: loss inf iteration 1300 / 1500: loss inf iteration 1400 / 1500: loss inf iteration 0 / 1500: loss 1544.611375 iteration 100 / 1500: loss 4238678903987820189366779422151797188648360345528845059954184416150988909166920159824040826765763779805042522194269368745984.000000 iteration 200 / 1500: loss 10945328083072100003028181743038293275798547088038776390451287457648334703187769946699615759302360535359122463204117538266218886366287342739804724717868689791260101164228515999586856183176780444739060870167407716397367014815094874657772466601984.000000 iteration 300 / 1500: loss inf iteration 400 / 1500: loss inf iteration 500 / 1500: loss inf iteration 600 / 1500: loss nan iteration 700 / 1500: loss nan iteration 800 / 1500: loss nan iteration 900 / 1500: loss nan iteration 1000 / 1500: loss nan iteration 1100 / 1500: loss nan iteration 1200 / 1500: loss nan iteration 1300 / 1500: loss nan iteration 1400 / 1500: loss nan lr 1.000000e-07 reg 5.000000e+04 train accuracy: 0.364878 val accuracy: 0.368000 lr 1.000000e-07 reg 1.000000e+05 train accuracy: 0.353265 val accuracy: 0.364000 lr 5.000000e-05 reg 5.000000e+04 train accuracy: 0.051306 val accuracy: 0.046000 lr 5.000000e-05 reg 1.000000e+05 train accuracy: 0.100265 val accuracy: 0.087000 best validation accuracy achieved during cross-validation: 0.368000
linear SVM on raw pixels final test set accuracy: 0.368000
新闻热点
疑难解答