首页 > 学院 > 开发设计 > 正文

POJ 2955 (区间dp,划分区间求解)

2019-11-06 08:02:36
字体:
来源:转载
供稿:网友

Brackets
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 7285 Accepted: 3892

Description

We give the following inductive definition of a “regular brackets” sequence:

the empty sequence is a regular brackets sequence,if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, andif a and b are regular brackets sequences, then ab is a regular brackets sequence.no other sequence is a regular brackets sequence

For instance, all of the following character sequences are regular brackets sequences:

(), [], (()), ()[], ()[()]

while the following character sequences are not:

(, ], )(, ([)], ([(]

Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1i2, …, im where 1 ≤ i1 < i2 < … < im ≤ nai1ai2 … aim is a regular brackets sequence.

Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

Input

The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters ()[, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the Word “end” and should not be PRocessed.

Output

For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

Sample Input

((()))()()()([]]))[)(([][][)end

Sample Output

66406

分析:划分区间求解,状态方程dp(i,j)=max(dp(i,k)+dp(k+1,j)); dp(i,j)表示从i到j的最大长度

AC代码;

#include<cstdio>#include<cstring>#include<algorithm>using namespace std;const int maxn=100+10;int dp[maxn][maxn];char s[maxn];int main(){	while(scanf("%s",s+1)==1){		if(s[1]=='e')break;				int l=strlen(s+1);		memset(dp,0,sizeof(dp));		for(int len=2;len<=l;len++){  //长度 			for(int i=1;i<=l-len+1;i++) //起点 			{			 int j=i+len-1;  //终点 			 if(s[i]=='(' && s[j]==')' || s[i]=='[' && s[j]==']')			 dp[i][j]=dp[i+1][j-1]+2;			 else dp[i][j]=dp[i][j-1];			 			 for(int k=i;k<j;k++)			 dp[i][j]=max(dp[i][j],dp[i][k]+dp[k+1][j]);		   }		}				printf("%d/n",dp[1][l]);	}	return 0;} 


发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表