首页 > 学院 > 开发设计 > 正文

hdu 3791 poj 1577 二叉搜索树

2019-11-06 08:07:22
字体:
来源:转载
供稿:网友

其实并不知道什么意思,就先留着吧

hdu 3791

判断两序列是否为同一二叉搜索树序列Input开始一个数n,(1<=n<=20) 表示有n个需要判断,n= 0 的时候输入结束。 接下去一行是一个序列,序列长度小于10,包含(0~9)的数字,没有重复数字,根据这个序列可以构造出一颗二叉搜索树。 接下去的n行有n个序列,每个序列格式跟第一个序列一样,请判断这两个序列是否能组成同一颗二叉搜索树。Output如果序列相同则输出YES,否则输出NO Sample Input
25674325432675763420Sample Output
YESNO
#include<stdio.h>#include<string.h>#include<algorithm>using namespace std;typedef struct Node{    int val;    Node *lch,*rch;}*node,node1;void insert(node &p,int x){    if(p==NULL)    {        p=new node1();        p->val=x;        p->lch=p->rch=NULL;    }    else    {        if(x<p->val)            insert(p->lch,x);        else            insert(p->rch,x);    }}void qian(node p,int &y,int a[]){    a[y++]=p->val;//前序    if(p->lch!=NULL)        qian(p->lch,y,a);    if(p->rch!=NULL)        qian(p->rch,y,a);    //  a[y++]=p->val;//后序}int main(){    int n;    char a[22],a1[22];    while(~scanf("%d",&n))    {        if(n==0) break;        int b[22],b1[22];        node p,p1;        p=NULL;        scanf("%s",a);        int len=strlen(a);        for(int i=0; i<len; i++)            insert(p,a[i]-'0');        int y=0;        qian(p,y,b);        for(int i=0; i<n; i++)        {            int flag=0;            scanf("%s",a1);            p1=NULL;            for(int j=0; j<len; j++)                insert(p1,a1[j]-'0');            int y=0;            qian(p1,y,b1);            for(int j=0; j<len; j++)                if(b1[j]!=b[j])                {                    flag=1;                    PRintf("NO/n");                    break;                }            if(flag==0)                printf("YES/n");        }    }    return 0;}poj  1577

 Figure 1
Figure 1 shows a graphical representation of a binary tree of letters. People familiar with binary trees can skip over the definitions of a binary tree of letters, leaves of a binary tree, and a binary search tree of letters, and go right to The problem. A binary tree of letters may be one of two things: It may be empty. It may have a root node. A node has a letter as data and refers to a left and a right subtree. The left and right subtrees are also binary trees of letters.In the graphical representation of a binary tree of letters: Empty trees are omitted completely. Each node is indicated by Its letter data, A line segment down to the left to the left subtree, if the left subtree is nonempty, A line segment down to the right to the right subtree, if the right subtree is nonempty.A leaf in a binary tree is a node whose subtrees are both empty. In the example in Figure 1, this would be the five nodes with data B, D, H, P, and Y. The preorder traversal of a tree of letters satisfies the defining properties: If the tree is empty, then the preorder traversal is empty. If the tree is not empty, then the preorder traversal consists of the following, in order The data from the root node, The preorder traversal of the root's left subtree, The preorder traversal of the root's right subtree.The preorder traversal of the tree in Figure 1 is KGCBDHQMPY. A tree like the one in Figure 1 is also a binary search tree of letters. A binary search tree of letters is a binary tree of letters in which each node satisfies: The root's data comes later in the alphabet than all the data in the nodes in the left subtree. The root's data comes earlier in the alphabet than all the data in the nodes in the right subtree. The problem: Consider the following sequence of Operations on a binary search tree of letters Remove the leaves and list the data removed Repeat this procedure until the tree is empty Starting from the tree below on the left, we produce the sequence of trees shown, and then the empty tree 
by removing the leaves with data BDHPY CM GQ K Your problem is to start with such a sequence of lines of leaves from a binary search tree of letters and output the preorder traversal of the tree.InputThe input will contain one or more data sets. Each data set is a sequence of one or more lines of capital letters. The lines contain the leaves removed from a binary search tree in the stages described above. The letters on a line will be listed in increasing alphabetical order. Data sets are separated by a line containing only an asterisk ('*'). The last data set is followed by a line containing only a dollar sign ('$'). There are no blanks or empty lines in the input.OutputFor each input data set, there is a unique binary search tree that would produce the sequence of leaves. The output is a line containing only the preorder traversal of that tree, with no blanks.Sample Input
BDHPYCMGQK*ACB$Sample Output
KGCBDHQMPYBAC
#include<stdio.h>#include<string.h>typedef struct Node{    char val;    Node *lch,*rch;}*node,node1;node1 *p;void creat(node &p,char x){    if(p==NULL)    {        p=new node1();        p->val=x;        p->lch=p->rch=NULL;    }    else    {        if(x<p->val)            creat(p->lch,x);        else            creat(p->rch,x);    }}void preorder(node p,int y){    if(p!=NULL)        printf("%c",p->val);    if(p->lch!=NULL)        preorder(p->lch,y);    if(p->rch!=NULL)        preorder(p->rch,y);}int main(){    char s[50][50];    int i=0;    while(~scanf("%s",s[i++]))    {        p=NULL;        if(s[i-1][0]=='*'||s[i-1][0]=='$')        {            for(int j=i-2; j>=0; j--)            {                for(int k=0; k<strlen(s[j]); k++)                {                    creat(p,s[j][k]);                }            }            preorder(p,0);            printf("/n");            i=0;        }    }    return 0;}


上一篇:返回指向函数的指针

下一篇:Vector

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表