原题链接在此
Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand.
(i.e., 0 1 2 4 5 6 7
might become 4 5 6 7 0 1 2
).
You are given a target value to search. If found in the array return its index, otherwise return -1.
You may assume no duplicate exists in the array.
可以利用二分查找的思路,达到O(logN)的时间复杂度。
这样排序的特点就是,存在一个最小值(比如上面例子里的0),这个最小值的左半部分的最小值(比如上面例子里的4),大于:这个最小值的右半部分(包括他本身)的最大值(比如上面例子里的2)。可以利用这一点来找这个最小值。
class Solution {public: int search(vector<int>& nums, int target) { int low = 0, high = nums.size() - 1; int mid = 0; while (low < high) { mid = (low + high) / 2; if (nums[mid] > nums[high]) low = mid + 1; else high = mid; } int smallest = low; if (nums.size() == 0) { return -1; } else if (target >= nums[smallest] && target <= nums[nums.size() - 1]) { low = smallest; high = nums.size() - 1; } else if (target >= nums[0] && target <= nums[smallest - 1]) { low = 0; high = smallest - 1; } else { return -1; } while (low <= high) { mid = (low + high) / 2; if (nums[mid] == target) return mid; if (nums[mid] < target) low = mid + 1; else high = mid - 1; } return -1; }};
新闻热点
疑难解答