Return elements, either from x or y, depending on condition.
If only condition is given, return condition.nonzero().
Parameters: | condition : array_like, bool When True, yield x, otherwise yield y. x, y : array_like, optional Values from which to choose. x and y need to have the sameshape as condition. |
---|---|
Returns: | out : ndarray or tuple of ndarrays
|
[xv if c else yv for (c,xv,yv) in zip(condition,x,y)]>>> np.where([[True, False], [True, True]],... [[1, 2], [3, 4]],... [[9, 8], [7, 6]])array([[1, 8], [3, 4]])>>> np.where([[0, 1], [1, 0]])(array([0, 1]), array([1, 0]))>>> x = np.arange(9.).reshape(3, 3)>>> np.where( x > 5 )(array([2, 2, 2]), array([0, 1, 2]))>>> x[np.where( x > 3.0 )] # Note: result is 1D.array([ 4., 5., 6., 7., 8.])>>> np.where(x < 5, x, -1) # Note: broadcasting.array([[ 0., 1., 2.], [ 3., 4., -1.], [-1., -1., -1.]])Find the indices of elements of x that are in goodvalues.
>>> goodvalues = [3, 4, 7]>>> ix = np.in1d(x.ravel(), goodvalues).reshape(x.shape)>>> ixarray([[False, False, False], [ True, True, False], [False, True, False]], dtype=bool)>>> np.where(ix)(array([1, 1, 2]), array([0, 1, 1]))
新闻热点
疑难解答