require(RSNNS)library(neuralnet)set.seed(2016)attribute<-as.data.frame(sample(seq(-2,2,length=50),50,replace=F),ncol=1)response<-attribute^2data<-cbind(attribute,response)colnames(data)<-c("attribute","response")head(data,10)attribute response1 -1.2653061 1.600999582 -1.4285714 2.040816333 1.2653061 1.600999584 -1.5102041 2.280716375 -0.2857143 0.081632656 -1.5918367 2.533944197 0.2040816 0.041649318 1.1020408 1.214493969 -2.0000000 4.0000000010 -1.8367347 3.37359434fit<-neuralnet(response~attribute,data=data,hidden=c(3,3),threshold = 0.01)testdata<-as.matrix(sample(seq(-2,2,length=10),10,replace=F),ncol=1)PRed<-compute(fit,testdata)result<-cbind(testdata,pred$net.result,testdata^2)colnames(result)<-c("Attribute","Prediction","Actual")round(result,4)Attribute Prediction Actual [1,] -1.5556 2.4213 2.4198 [2,] -0.2222 0.0364 0.0494 [3,] -1.1111 1.2254 1.2346 [4,] 1.1111 1.2013 1.2346 [5,] 0.6667 0.4395 0.4444 [6,] 1.5556 2.4521 2.4198 [7,] -0.6667 0.4554 0.4444 [8,] 0.2222 0.0785 0.0494 [9,] 2.0000 3.9317 4.0000[10,] -2.0000 3.9675 4.0000require(Metrics)data("Boston",package="MASS")data<-Bostonkeeps<-c("crim","indus","nox","rm","age","dis","tax","ptratio","lstat","medv")data<-data[keeps]apply(data,2,function(x) sum(is.na(x)))crim indus nox rm age dis tax ptratio lstat 0 0 0 0 0 0 0 0 0 medv 0
新闻热点
疑难解答