Ignatius is poor at math,he falls across a puzzle PRoblem,so he has no choice but to appeal to Eddy. this problem describes that:f(x)=5*x^13+13*x^5+k*a*x,input a nonegative integer k(k<10000),to find the minimal nonegative integer a,make the arbitrary integer x ,65|f(x)if no exists that a,then print “no”.
Input The input contains several test cases. Each test case consists of a nonegative integer k, More details in the Sample Input.
Output The output contains a string “no”,if you can’t find a,or you should output a line contains the a.More details in the Sample Output.
Sample Input
11 100 9999
Sample Output
22 no 43
题目大意:输入k,然后求对于任意的x,使f(x)能被65整除时,输出此时最小的a。
想法如下: 数学归纳法证明:
f(x)=5*x^13+13*x^5+k*a*x
第一步:f(0)=0;成立:
第二步:假设f(x)能被65整除,则有5*x^13+13*x^5+k*a*x能被65整出;
第三步:则f(x+1)=5*(x+1)^13+13*(x+1)^5+k*a*(x+1);
根据二项式定理分析题目:
f(x+1)=5*(c(13,0)+c(13,1)x+c(13,2)*x^2+…….+c(13,13)*x^13)+13(c(5,0)+c(5,1)x+……+c(5,5)*x^5)+k*a(x+1)
=f(x)+5*(c(13,0)+c(13,1)x+c(13,2)*x^2+…….+c(13,12)*x^12)+13(c(5,0)+c(5,1)*x+……+c(5,4)*x^4)+k*a;
=f(x)+5+5*c(13,1)*x+5*c(13,2)*x^2+……+5*c(13,12)*x^12+13+13*c(5,1)*x+…..+k*a; 此时会发现5(n+1)^13+13(x+1)^5一定能被%65==0.
用f(x+1)-f(x),会发现,只有18+ka不能确定是否能%65==0;又因(18+ka)%65=(18%65+(k%65)*(a%65))%65,由此可以确定0
#include <stdio.h>int main(){ int k,i; while(~scanf("%d",&k)) { for(i=1;i<=65;i++) { if((18+k*i)%65==0) { printf("%d/n",i); break; } } if(i==66)printf("no/n"); } return 0;}新闻热点
疑难解答