首页 > 学院 > 开发设计 > 正文

leetcode 327. Count of Range Sum

2019-11-08 00:54:37
字体:
来源:转载
供稿:网友
/*leetcode 327. Count of Range SumGiven an integer array nums, return the number of range sums that lie in [lower, upper] inclusive.Range sum S(i, j) is defined as the sum of the elements in nums between indices i and j (i ≤ j), inclusive.Note:A naive algorithm of O(n2) is trivial. You MUST do better than that.题目大意:对于给定的数组和上下界,求有多少个不同的区间使得每个区间和载给定的上下限之间解题思路:1.暴力:先求和,然后枚举2.使用multiset,可以很方便求出满足条件元素个数3.归并排序。第一步还是求和sum[i+1]=sum[i]+nums[i],然后[i,j]的和可以用sum[j]-sum[i]来表示。这里需要用归并排序,使得左右取件的sum有序。(为什么可以这样做,不是区间统计吗?因为这里只需要统计个数,而不是具体的范围)。枚举左区间的坐标i,找到右区间满足:第一个sum[rl]-sum[i]>=lower的临界值rl;第一个sum[rr]-sum[i]<upper的临界值rr.则贡献的个数为rr-rl个。而对于排序的数组,合并的复杂度为O(n).每次计算完后进行归并排序。*/#include <iostream>#include <vector>#include <algorithm>#include <set>using namespace std;class Solution {public: //朴素求法:先求和,然后枚举 /*int countRangeSum(vector<int>& nums, int lower, int upper) { if (nums.size() == 0) return 0; vector<int> sums(nums.size()+1,0); for (int i = 0; i < nums.size(); ++i) sums[i + 1] = sums[i] + nums[i]; int ans = 0; for (int i = 0; i < nums.size(); ++i) { for (int j = i + 1; j <= nums.size(); ++j) { if (lower <= sums[j] - sums[i] && sums[j] - sums[i] <= upper) ans++; } } return ans; }*/ int countRangeSum1(vector<int>& nums, int lower, int upper) { multiset<long long> pSum; int res = 0, i; long long sum = 0; for (i = 0, pSum.insert(0); i < nums.size(); ++i) { sum += nums[i]; //直接计算 res += distance(pSum.lower_bound(sum - upper), pSum.upper_bound(sum - lower)); pSum.insert(sum); } return res; } int countRangeSum(vector<int>& nums, int lower, int upper) { int len = nums.size(); vector<long> sums(len + 1, 0); for (int i = 0; i < len; ++i) { sums[i + 1] = sums[i] + nums[i]; } return MergeSort(sums, 1, len, lower, upper); } int MergeSort(vector<long>&sums, int left, int right, int lower, int upper) { int mid, i, r, res, j, k,t; if (left > right) return 0; if (left == right) return (((sums[left] >= lower) && (sums[left] <= upper)) ? 1 : 0); vector<long long> tmp(right - left + 1, 0);//辅助空间,用于归并排序 mid = (left + right) / 2; //首先计算非重叠的部分 res = MergeSort(sums, left, mid, lower, upper) + MergeSort(sums, mid + 1, right, lower, upper); //计算边界符合要求的个数 r = 0; t = mid + 1; for (i = left, j = k = mid + 1; i <= mid; ++i) { //对于第i个数 //1。先找到第一个j,满足sums[j] - sums[i] < lower while (j <= right && sums[j] - sums[i] < lower) ++j; //2. 在找到第一个k满足sums[k] - sums[i] <= upper while (k <= right && sums[k] - sums[i] <= upper) ++k; //3.这样在边界的地方就会有k-j个 res += k - j; //4. 把右边部分比sums[i]小的数和sums[i]放入缓存数组中,为了以后的排序 while (t <= right && sums[t] < sums[i]) tmp[r++] = sums[t++]; tmp[r++] = sums[i]; } //现在tmp里面是排好序的,复制过去,那么从left到right就是已经排好序的了 for (i = 0; i < r; ++i) sums[left + i] = tmp[i]; return res; } };void TEST(){ Solution sol; vector<int>nums{ -2,5,-1 }; int ret = sol.countRangeSum(nums, -2, 2); cout << ret << endl;}int main(){ TEST(); return 0;}
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表