DZY loves colors, and he enjoys painting.
On a colorful day, DZY gets a colorful ribbon, which consists of n units (they are numbered from 1 to n from left to right). The color of thei-th unit of the ribbon is i at first. It is colorful enough, but we still consider that the colorfulness of each unit is 0 at first.
DZY loves painting, we know. He takes up a paintbrush with color x and uses it to draw a line on the ribbon. In such a case some contiguous units are painted. Imagine that the color of unit i currently is y. When it is painted by this paintbrush, the color of the unit becomes x, and the colorfulness of the unit increases by |x - y|.
DZY wants to perform m Operations, each operation can be one of the following:
Paint all the units with numbers between l and r (both inclusive) with color x.Ask the sum of colorfulness of the units between l and r (both inclusive).Can you help DZY?
InputThe first line contains two space-separated integers n, m (1 ≤ n, m ≤ 105).
Each of the next m lines begins with a integer type (1 ≤ type ≤ 2), which rePResents the type of this operation.
If type = 1, there will be 3 more integers l, r, x (1 ≤ l ≤ r ≤ n; 1 ≤ x ≤ 108) in this line, describing an operation 1.
If type = 2, there will be 2 more integers l, r (1 ≤ l ≤ r ≤ n) in this line, describing an operation 2.
OutputFor each operation 2, print a line containing the answer — sum of colorfulness.
Examplesinput3 31 1 2 41 2 3 52 1 3output8input3 41 1 3 42 1 12 2 22 3 3output321input10 61 1 5 31 2 7 91 10 10 111 3 8 121 1 10 32 1 10output129NoteIn the first sample, the color of each unit is initially [1, 2, 3], and the colorfulness is [0, 0, 0].
After the first operation, colors become [4, 4, 3], colorfulness become [3, 2, 0].
After the second operation, colors become [4, 5, 5], colorfulness become [3, 3, 2].
So the answer to the only operation of type 2 is 8.
题解:线段树
对于存在不同颜色的区间,每次直接暴力向下修改,直到该区间的颜色数都相同。
询问是O(logn)的应该没有问题。
但是修改的话,我并不会严格的证明,不过应该是近似O(logn)的。
#include<iostream>#include<algorithm>#include<cmath>#include<cstring>#include<cstdio>#define N 100003#define LL long longusing namespace std;int n,m,a[N];struct data{ bool pd; LL l,num,delta;}tr[N*4];void update(int now){ tr[now].num=tr[now<<1].num+tr[now<<1|1].num; tr[now].pd=0; if (tr[now<<1].pd&&tr[now<<1|1].pd&&tr[now<<1].l==tr[now<<1|1].l) tr[now].pd=1,tr[now].l=tr[now<<1].l; }void build(int now,int l,int r){ if (l==r) { tr[now].l=a[l]; tr[now].num=0; tr[now].pd=1; return; } int mid=(l+r)/2; build(now<<1,l,mid); build(now<<1|1,mid+1,r); update(now);}LL Abs(LL x){ if (x<0) return -x; return x;}void pushdown(int now,int l,int r){ int mid=(l+r)/2; if (tr[now].pd) { tr[now<<1].pd=tr[now<<1|1].pd=1; tr[now<<1].delta+=tr[now].delta; tr[now<<1|1].delta+=tr[now].delta; tr[now<<1].num+=tr[now].delta*(LL)(mid-l+1); tr[now<<1|1].num+=tr[now].delta*(LL)(r-mid); tr[now<<1].l=tr[now<<1|1].l=tr[now].l; tr[now].delta=0; }}void qjchange(int now,int l,int r,int ll,int rr,int v){ if (ll<=l&&r<=rr) { int mid=(l+r)/2; if (tr[now].pd==1) { tr[now].num+=Abs(tr[now].l-v)*(LL)(r-l+1); tr[now].delta+=Abs(tr[now].l-v); tr[now].l=v; return; } else qjchange(now<<1,l,mid,ll,rr,v),qjchange(now<<1|1,mid+1,r,ll,rr,v); update(now); return; } int mid=(l+r)/2; pushdown(now,l,r); if (ll<=mid) qjchange(now<<1,l,mid,ll,rr,v); if (rr>mid) qjchange(now<<1|1,mid+1,r,ll,rr,v); update(now);}LL query(int now,int l,int r,int ll,int rr){ if (ll<=l&&r<=rr) return tr[now].num; int mid=(l+r)/2; bool pd=false; LL t=0; pushdown(now,l,r); if (ll<=mid) t=query(now<<1,l,mid,ll,rr); if (rr>mid) t+=query(now<<1|1,mid+1,r,ll,rr); return t;}int main(){ freopen("a.in","r",stdin); scanf("%d%d",&n,&m); for (int i=1;i<=n;i++) a[i]=i; build(1,1,n); for (int i=1;i<=m;i++) { int opt,x,y,val; data t; scanf("%d%d%d",&opt,&x,&y); if (opt==1) { scanf("%d",&val); qjchange(1,1,n,x,y,val); } else printf("%I64d/n",query(1,1,n,x,y)); }}
新闻热点
疑难解答