来源蓝桥杯:算法提高 石子合并
很明显的区间DP,d(i, j)表示取第i堆到第j堆石子最少花费,转移方程d(i, j) = min(d(i, k) + d(k+1, j)) + sum[j] - sum[i].
四边形a <= b < c <= d,有w(b, c) <= w(a, d)满足决策单调性 . 且w(a, c) + w(b, d) <= w(b, c) + w(a, d)满足四边形不等式 .
AC代码:
#include<cstdio>#include<algorithm>using namespace std;const int inf = 1 << 30;const int maxn = 1000 + 5;int dp[maxn][maxn], s[maxn][maxn], a[maxn], sum[maxn];//四边形不等式优化 int solve(int n){ for(int i = 1; i <= n; ++i) { dp[i][i] = 0; s[i][i] = i; } for(int l = 2; l <= n; ++l) { for(int i = 1; i <= n - l + 1; ++i) { int j = i + l - 1; dp[i][j] = inf; int x = s[i][j-1], y = s[i+1][j]; for(int k = x; k <= y; ++k) { int h = dp[i][k] + dp[k+1][j] + sum[j] - sum[i-1]; if(h < dp[i][j]) { dp[i][j] = h; s[i][j] = k; } } } } return dp[1][n];}int main(){ int n; while(scanf("%d", &n) == 1){ sum[0] = 0; for(int i = 1; i <= n; ++i) { scanf("%d", &a[i]); sum[i] = sum[i - 1] + a[i]; } PRintf("%d/n", solve(n)); } return 0;}如有不当之处欢迎指出!
新闻热点
疑难解答