#include "opencv2/highgui.hpp"#include "opencv2/core.hpp"#include "opencv2/imgPRoc.hpp"#include <iostream>using namespace cv;using namespace std;// static void help()// {// cout << "/nThis program demonstrates kmeans clustering./n"// "It generates an image with random points, then assigns a random number of cluster/n"// "centers and uses kmeans to move those cluster centers to their representitive location/n"// "Call/n"// "./kmeans/n" << endl;// }int main(int /*argc*/, char** /*argv*/){ const int MAX_CLUSTERS = 5; Scalar colorTab[] = { Scalar(0, 0, 255), Scalar(0,255,0), Scalar(255,100,100), Scalar(255,0,255), Scalar(0,255,255) }; Mat img(500, 500, CV_8UC3); RNG rng(12345); for (;;) { int k, clusterCount = rng.uniform(2, MAX_CLUSTERS + 1); int i, sampleCount = rng.uniform(1, 1001); Mat points(sampleCount, 1, CV_32FC2), labels; clusterCount = MIN(clusterCount, sampleCount); Mat centers; /* generate random sample from multigaussian distribution */ for (k = 0; k < clusterCount; k++) { Point center; center.x = rng.uniform(0, img.cols); center.y = rng.uniform(0, img.rows); Mat pointChunk = points.rowRange(k*sampleCount / clusterCount, k == clusterCount - 1 ? sampleCount : (k + 1)*sampleCount / clusterCount); rng.fill(pointChunk, RNG::NORMAL, Scalar(center.x, center.y), Scalar(img.cols*0.05, img.rows*0.05)); } randShuffle(points, 1, &rng); kmeans(points, clusterCount, labels, TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 10, 1.0), 3, KMEANS_PP_CENTERS, centers); img = Scalar::all(0); for (i = 0; i < sampleCount; i++) { int clusterIdx = labels.at<int>(i); Point ipt = points.at<Point2f>(i); circle(img, ipt, 2, colorTab[clusterIdx], FILLED, LINE_AA); } imshow("clusters", img); char key = (char)waitKey(); if (key == 27 || key == 'q' || key == 'Q') // 'ESC' break; } return 0;}RNG 随机数产生器。RNG::uniform() 产生单个服从均匀分布的随机数。RNG::fill(
( | InputOutputArray | mat, | |
int | distType, | ||
InputArray | a, | ||
InputArray | b, | ||
bool | saturateRange = false | ||
) |
新闻热点
疑难解答