首页 > 学院 > 开发设计 > 正文

Median of Two Sorted Arrays-LeetCode

2019-11-08 02:30:01
字体:
来源:转载
供稿:网友

There are two sorted arrays nums1 and nums2 of size m and n respectively.

Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).

Example 1:

nums1 = [1, 3]nums2 = [2]The median is 2.0

Example 2:

nums1 = [1, 2]nums2 = [3, 4]The median is (2 + 3)/2 = 2.5

题目大意:求得两个升序数组的中位数(根据两个数组长度和中位数定义稍有区分)

题目限定:The overall run time complexity should be O(log (m+n)).

题目思路:看到这个时间复杂度要求,我最先想到的是二叉树相关的数据结构。

如果能做出一个平衡二叉树,左子树都是小于等于根节点,右子树都是大于根节点,那这题目岂不是很简单吗?简直无脑输出。

仔细想想是不行的,因为将所有数字加入树,需要O(m+n),而把元素准确的放入合适位置,需要O(log2(m+n)),这俩复杂度相乘,肯定超时了。

其实还是我没见过世面,看了题解,脑洞打开,如果采用的是二分法搜索,刚好满足复杂度O(log2(m+n))。

以下是引用的题目解析(膜拜):

M MissMary Reputation:  800

To solve this PRoblem, we need to understand "What is the use of median". In statistics, the median is used for dividing a set into two equal length subsets, that one subset is always greater than the other. If we understand the use of median for dividing, we are very close to the answer.

First let's cut A into two parts at a random position i:

left_A | right_AA[0], A[1], ..., A[i-1] | A[i], A[i+1], ..., A[m-1]

Since A has m elements, so there are m+1 kinds of cutting( i = 0 ~ m ). And we know: len(left_A) = i, len(right_A) = m - i . Note: when i = 0 , left_A is empty, and when i = m , right_A is empty.

With the same way, cut B into two parts at a random position j:

left_B | right_BB[0], B[1], ..., B[j-1] | B[j], B[j+1], ..., B[n-1]

Put left_A and left_B into one set, and put right_A and right_B into another set. Let's name them left_part and right_part :

left_part | right_partA[0], A[1], ..., A[i-1] | A[i], A[i+1], ..., A[m-1]B[0], B[1], ..., B[j-1] | B[j], B[j+1], ..., B[n-1]

If we can ensure:

1) len(left_part) == len(right_part)2) max(left_part) <= min(right_part)

then we divide all elements in {A, B} into two parts with equal length, and one part is always greater than the other. Then median = (max(left_part) + min(right_part))/2.

To ensure these two conditions, we just need to ensure:

(1) i + j == m - i + n - j (or: m - i + n - j + 1) if n >= m, we just need to set: i = 0 ~ m, j = (m + n + 1)/2 - i(2) B[j-1] <= A[i] and A[i-1] <= B[j]

ps.1 For simplicity, I presume A[i-1],B[j-1],A[i],B[j] are always valid even if i=0/i=m/j=0/j=n . I will talk about how to deal with these edge values at last.

ps.2 Why n >= m? Because I have to make sure j is non-nagative since 0 <= i <= m and j = (m + n + 1)/2 - i. If n < m , then j may be nagative, that will lead to wrong result.

So, all we need to do is:

Searching i in [0, m], to find an object `i` that: B[j-1] <= A[i] and A[i-1] <= B[j], ( where j = (m + n + 1)/2 - i )

And we can do a binary search following steps described below:

<1> Set imin = 0, imax = m, then start searching in [imin, imax]<2> Set i = (imin + imax)/2, j = (m + n + 1)/2 - i<3> Now we have len(left_part)==len(right_part). And there are only 3 situations that we may encounter: <a> B[j-1] <= A[i] and A[i-1] <= B[j] Means we have found the object `i`, so stop searching. <b> B[j-1] > A[i] Means A[i] is too small. We must `ajust` i to get `B[j-1] <= A[i]`. Can we `increase` i? Yes. Because when i is increased, j will be decreased. So B[j-1] is decreased and A[i] is increased, and `B[j-1] <= A[i]` may be satisfied. Can we `decrease` i? `No!` Because when i is decreased, j will be increased. So B[j-1] is increased and A[i] is decreased, and B[j-1] <= A[i] will be never satisfied. So we must `increase` i. That is, we must ajust the searching range to [i+1, imax]. So, set imin = i+1, and goto <2>. <c> A[i-1] > B[j] Means A[i-1] is too big. And we must `decrease` i to get `A[i-1]<=B[j]`. That is, we must ajust the searching range to [imin, i-1]. So, set imax = i-1, and goto <2>.

When the object i is found, the median is:

max(A[i-1], B[j-1]) (when m + n is odd)or (max(A[i-1], B[j-1]) + min(A[i], B[j]))/2 (when m + n is even)

Now let's consider the edges values i=0,i=m,j=0,j=n where A[i-1],B[j-1],A[i],B[j] may not exist. Actually this situation is easier than you think.

What we need to do is ensuring that max(left_part) <= min(right_part). So, if i and j are not edges values(means A[i-1],B[j-1],A[i],B[j] all exist), then we must check both B[j-1] <= A[i] and A[i-1] <= B[j]. But if some of A[i-1],B[j-1],A[i],B[j] don't exist, then we don't need to check one(or both) of these two conditions. For example, if i=0, then A[i-1] doesn't exist, then we don't need to check A[i-1] <= B[j]. So, what we need to do is:

Searching i in [0, m], to find an object `i` that: (j == 0 or i == m or B[j-1] <= A[i]) and (i == 0 or j == n or A[i-1] <= B[j]) where j = (m + n + 1)/2 - i

And in a searching loop, we will encounter only three situations:

<a> (j == 0 or i == m or B[j-1] <= A[i]) and (i == 0 or j = n or A[i-1] <= B[j]) Means i is perfect, we can stop searching.<b> j > 0 and i < m and B[j - 1] > A[i] Means i is too small, we must increase it.<c> i > 0 and j < n and A[i - 1] > B[j] Means i is too big, we must decrease it.

Thank @Quentin.chen , him pointed out that: i < m ==> j > 0 and i > 0 ==> j < n . Because:

m <= n, i < m ==> j = (m+n+1)/2 - i > (m+n+1)/2 - m >= (2*m+1)/2 - m >= 0 m <= n, i > 0 ==> j = (m+n+1)/2 - i < (m+n+1)/2 <= (2*n+1)/2 <= n

So in situation <b> and <c>, we don't need to check whether j > 0 and whether j < n.

Below is the accepted code:

def median(A, B): m, n = len(A), len(B) if m > n: A, B, m, n = B, A, n, m if n == 0: raise ValueError imin, imax, half_len = 0, m, (m + n + 1) / 2 while imin <= imax: i = (imin + imax) / 2 j = half_len - i if i < m and B[j-1] > A[i]: # i is too small, must increase it imin = i + 1 elif i > 0 and A[i-1] > B[j]: # i is too big, must decrease it imax = i - 1 else: # i is perfect if i == 0: max_of_left = B[j-1] elif j == 0: max_of_left = A[i-1] else: max_of_left = max(A[i-1], B[j-1]) if (m + n) % 2 == 1: return max_of_left if i == m: min_of_right = B[j] elif j == n: min_of_right = A[i] else: min_of_right = min(A[i], B[j]) return (max_of_left + min_of_right) / 2.02 years ago reply quote 

附上AC的编码:

public class Solution {    public double findMedianSortedArrays(int[] nums1, int[] nums2) {        double median=0;        int[] arraylonger=(nums1.length>nums2.length)?nums1:nums2;        int[] arrayshorter=(nums1.length<=nums2.length)?nums1:nums2;        //if(arraylonger==arrayshorter)System.out.println("went wrong!~");                int imin=0,imax=arrayshorter.length;        int i=0,j=0,maxleft=0,minright=0,ll=arraylonger.length,sl=arrayshorter.length;        while(imin<=imax){        	i=(imin+imax)/2; //指示在较短数组中的index        	j=(ll+sl)/2-i;        	/**        	 * 注意,在这里长数组下标的计算公式不同,自己给自己解释下        	 * 因为i+j=m-i+n-j,直接得到的应当是j=(m+n)/2-i。因为整数的取整规则,如此计算得到的j会比j=(m+n+1)/2-i小1,也会比实际浮点数运算的结果要小一点。        	 * 这可以理解为,当俩数组的长度总和为奇数时,右边的数字要比左边的多一个,那么此时的中位数就是右边里最小的那一个了(即代码25到31行与原大神解释的出入)。        	 */        	        	if(i>0 && arrayshorter[i-1]>arraylonger[j]){        		imax=i-1;        	}else if(i<sl && arraylonger[j-1]>arrayshorter[i]){        		imin=i+1;        	}else{        		if(i==sl)minright=arraylonger[j];        		else if(j==ll)minright=arrayshorter[i];        		else minright=Math.min(arrayshorter[i], arraylonger[j]);        		if((sl+ll)%2==1){        			median = minright;        		    break;        		}        		        		if(i==0)maxleft=arraylonger[j-1];        		else if(j==0)maxleft=arrayshorter[i-1];        		else maxleft=Math.max(arraylonger[j-1], arrayshorter[i-1]);        		return (maxleft+minright)/2.0;	        	}  	        }		return median;    }}

AC的结果(果然上对了车,南辕北辙也不怕了):


发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表