题意:
给你一个每位是0或1的矩阵,问你是否可以经过交换行和交换列使矩阵的对角线都为1,如果可以输出交换的方法。
思路:
行和列的匹配,左边是行,右边是列,然后如果行列交点是1,那么就可以匹配,看是否为完美匹配,然后输出怎么交换的。
输出交换的路径:
可以锁定行,来选择列和它匹配,将选择的列移动到和该行形成对角线上是1的位置,比如和第一行匹配的列,就要移动要第一列,第二行的,就到第二列。其实就是对第i行,找一个第i个数是1的列和它匹配,然后看是否是最大匹配!
代码:
#include<bits/stdc++.h>using namespace std;const int maxn = 105;vector<int> e[maxn];int n, match[maxn], vis[maxn], ans1[maxn], ans2[maxn];bool dfs(int x){ for(int i = 0; i < e[x].size(); i++) { int to = e[x][i]; if(!vis[to]) { vis[to] = 1; if(!match[to] || dfs(match[to])) { match[to] = x; return true; } } } return false;}int Hungary(){ int res = 0; for(int i = 1; i <= n; i++) { memset(vis, 0, sizeof(vis)); res += dfs(i); } return res;}int main(void){ while(cin >> n) { memset(match, 0, sizeof(match)); for(int i = 1; i < maxn; i++) e[i].clear(); for(int i = 1; i <= n; i++) for(int j = 1; j <= n; j++) { int t; scanf("%d", &t); if(t) e[i].push_back(j); } if(Hungary() != n) puts("-1"); else { int cnt = 0; for(int i = 1; i <= n; i++) { int pos; for(int j = 1; j <= n; j++) if(match[j] == i) { pos = j; break; } if(pos != i) { ans1[cnt] = i; ans2[cnt++] = pos; swap(match[i], match[pos]); } } PRintf("%d/n", cnt); for(int i = 0; i < cnt; i++) printf("C %d %d/n", ans1[i], ans2[i]); } } return 0;}Given an N*N matrix with each entry equal to 0 or 1. You can swap any two rows or any two columns. Can you find a way to make all the diagonal entries equal to 1?InputThere are several test cases in the input. The first line of each test case is an integer N (1 <= N <= 100). Then N lines follow, each contains N numbers (0 or 1), separating by space, indicating the N*N matrix.OutputFor each test case, the first line contain the number of swaps M. Then M lines follow, whose format is “R a b” or “C a b”, indicating swapping the row a and row b, or swapping the column a and column b. (1 <= a, b <= N). Any correct answer will be accepted, but M should be more than 1000. If it is impossible to make all the diagonal entries equal to 1, output only one one containing “-1”. Sample Input20 11 021 01 0Sample Output1R 1 2-1
新闻热点
疑难解答