首页 > 学院 > 开发设计 > 正文

hdoj 2255 奔小康赚大钱 (KM算法 详解+模板)

2019-11-08 02:42:41
字体:
来源:转载
供稿:网友

没怎么理解。。。过段时间再看看

转自点击打开链接

【KM算法及其具体过程】

(1)可行点标:每个点有一个标号,记lx[i]为X方点i的标号,ly[j]为Y方点j的标号。如果对于图中的任意边(i, j, W)都有lx[i]+ly[j]>=W,则这一组点标是可行的。特别地,对于lx[i]+ly[j]=W的边(i, j, W),称为可行边;

(2)KM 算法的核心思想就是通过修改某些点的标号(但要满足点标始终是可行的),不断增加图中的可行边总数,直到图中存在仅由可行边组成的完全匹配为止,此时这个 匹配一定是最佳的(因为由可行点标的的定义,图中的任意一个完全匹配,其边权总和均不大于所有点的标号之和,而仅由可行边组成的完全匹配的边权总和等于所 有点的标号之和,故这个匹配是最佳的)。一开始,求出每个点的初始标号:lx[i]=max{e.W|e.x=i}(即每个X方点的初始标号为与这个X方 点相关联的权值最大的边的权值),ly[j]=0(即每个Y方点的初始标号为0)。这个初始点标显然是可行的,并且,与任意一个X方点关联的边中至少有一条可行边;

(3)然后,从每个X方点开始DFS增广。DFS增广的过程与最大匹配的Hungary算法基本相同,只是要注意两点:一是只找可行边,二是要把搜索过程中遍历到的X方点全部记下来(可以用vst搞一下),以进行后面的修改;(4) 增广的结果有两种:若成功(找到了增广轨),则该点增广完成,进入下一个点的增广。若失败(没有找到增广轨),则需要改变一些点的标号,使得图中可行边的 数量增加。方法为:将所有在增广轨中(就是在增广过程中遍历到)的X方点的标号全部减去一个常数d,所有在增广轨中的Y方点的标号全部加上一个常数d,则 对于图中的任意一条边(i, j, W)(i为X方点,j为Y方点):<1>i和j都在增广轨中:此时边(i, j)的(lx[i]+ly[j])值不变,也就是这条边的可行性不变(原来是可行边则现在仍是,原来不是则现在仍不是);<2>i在增广轨中而j不在:此时边(i, j)的(lx[i]+ly[j])的值减少了d,也就是原来这条边不是可行边(否则j就会被遍历到了),而现在可能是;<3>j在增广轨中而i不在:此时边(i, j)的(lx[i]+ly[j])的值增加了d,也就是原来这条边不是可行边(若这条边是可行边,则在遍历到j时会紧接着执行DFS(i),此时i就会被遍历到),现在仍不是;<4>i和j都不在增广轨中:此时边(i, j)的(lx[i]+ly[j])值不变,也就是这条边的可行性不变。这 样,在进行了这一步修改操作后,图中原来的可行边仍可行,而原来不可行的边现在则可能变为可行边。那么d的值应取多少?显然,整个点标不能失去可行性,也 就是对于上述的第<2>类边,其lx[i]+ly[j]>=W这一性质不能被改变,故取所有第<2>类边的 (lx[i]+ly[j]-W)的最小值作为d值即可。这样一方面可以保证点标的可行性,另一方面,经过这一步后,图中至少会增加一条可行边。(5)修改后,继续对这个X方点DFS增广,若还失败则继续修改,直到成功为止;

(6)以上就是KM算法的基本思路。但是朴素的实现方法,时间复杂度为O(n4)——需要找O(n)次增广路,每次增广最多需要修改O(n)次顶标,每次修改顶 标时由于要枚举边来求d值,复杂度为O(n2)。实际上KM算法的复杂度是可以做到O(n3)的。我们给每个Y顶点一个“松弛量”函数slack,每次开 始找增广路时初始化为无穷大。在寻找增广路的过程中,检查边(i,j)时,如果它不在相等子图中,则让slack[j]变成原值与 A[i]+B[j]-w[i,j]的较小值。这样,在修改顶标时,取所有不在交错树中的Y顶点的slack值中的最小值作为d值即可。但还要注意一点:修 改顶标后,要把所有不在交错树中的Y顶点的slack值都减去d

代码:

#include<bits/stdc++.h>using namespace std;const int maxn = 305;const int INF = 0x3f3f3f3f;int n, nx, ny;int match[maxn], lx[maxn], ly[maxn], slack[maxn];   ////lx,ly为顶标,nx,ny分别为x点集y点集的个数int visx[maxn], visy[maxn], w[maxn][maxn];int Hungary(int x){    visx[x] = 1;    for(int y = 1; y <= ny; y++)    {        if(visy[y]) continue;        int temp = lx[x]+ly[y]-w[x][y];        if(temp == 0)        {            visy[y] = 1;            if(match[y] == -1 || Hungary(match[y]))            {                match[y] = x;                return 1;            }        }        else if(slack[y] > temp)    ////不在相等子图中slack 取最小的            slack[y] = temp;    }    return 0;}int KM(){    memset(match, -1, sizeof(match));    memset(ly, 0, sizeof(ly));    for(int i = 1; i <= nx; i++)        lx[i] = -INF;    for(int i = 1; i <= nx; i++)    // //lx初始化为与它关联边中最大的        for(int j = 1; j <= ny; j++)            if(w[i][j] > lx[i])                lx[i] = w[i][j];    for(int x = 1; x <= nx; x++)    {        for(int i = 1; i <= ny; i++)            slack[i] = INF;        while(1)        {            memset(visx, 0, sizeof(visx));            memset(visy, 0, sizeof(visy));            if(Hungary(x)) break;   ////若成功(找到了增广轨),则该点增广完成,进入下一个点的增广                         //若失败(没有找到增广轨),则需要改变一些点的标号,使得图中可行边的数量增加。                        //方法为:将所有在增广轨中(就是在增广过程中遍历到)的X方点的标号全部减去一个常数d,                        //所有在增广轨中的Y方点的标号全部加上一个常数d            int d = INF;            for(int i = 1; i <= ny; i++)                if(!visy[i] && d > slack[i])                    d = slack[i];            for(int i = 1; i <= nx; i++)                if(visx[i])                    lx[i] -= d;            for(int i = 1; i <= ny; i++)                if(visy[i])                    ly[i] += d;                else                    slack[i] -= d;        }    }    int res = 0;    for(int i = 1; i <= ny; i++)        if(match[i] != -1)            res += w[match[i]][i];    return res;}int main(void){    while(cin >> n)    {        nx = ny = n;        for(int i = 1; i <= n; i++)            for(int j = 1; j <= n; j++)                scanf("%d", &w[i][j]);        int ans = KM();        PRintf("%d/n", ans);    }    return 0;}

传说在遥远的地方有一个非常富裕的村落,有一天,村长决定进行制度改革:重新分配房子。 这可是一件大事,关系到人民的住房问题啊。村里共有n间房间,刚好有n家老百姓,考虑到每家都要有房住(如果有老百姓没房子住的话,容易引起不安定因素),每家必须分配到一间房子且只能得到一间房子。 另一方面,村长和另外的村领导希望得到最大的效益,这样村里的机构才会有钱.由于老百姓都比较富裕,他们都能对每一间房子在他们的经济范围内出一定的价格,比如有3间房子,一家老百姓可以对第一间出10万,对第2间出2万,对第3间出20万.(当然是在他们的经济范围内).现在这个问题就是村领导怎样分配房子才能使收入最大.(村民即使有钱购买一间房子但不一定能买到,要看村领导分配的). Input输入数据包含多组测试用例,每组数据的第一行输入n,表示房子的数量(也是老百姓家的数量),接下来有n行,每行n个数表示第i个村名对第j间房出的价格(n<=300)。 Output请对每组数据输出最大的收入值,每组的输出占一行。 Sample Input
2100 1015 23Sample Output
123


上一篇:JVM内部结构

下一篇:魂六

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表