首页 > 学院 > 开发设计 > 正文

Ng机器学习课程Notes学习及编程实战系列-Part 2 Logistic Regression

2019-11-08 02:58:20
字体:
来源:转载
供稿:网友
本文) Notes理论要点,并且给出所有课程exercise的作业code和实验结果分析。”游泳是游会的“,希望通过这个系列可以深刻理解机器学习算法,并且自己动手写出work高效的机器学习算法code应用到真实数据集做实验,理论和实战兼备。

Part 2 Logistic Regression

1 Logistic Regression 的hypotheses函数

在Linear Regression中,如果我们假设待预测的变量y是离散的一些值,那么这就是分类问题。如果y只能取0或1,这就是binary classification的问题。我们仍然可考虑用Regression的方法来解决binary classification的问题。但是此时,由于我们已经知道y /in {0,1},而不是整个实数域R,我们就应该修改hypotheses函数h_/theta(x)的形式,可以使用Logistic Function将任意实数映射到[0,1]的区间内。即

其中我们对所有feature先进行线性组合,即/theta’ * x = /theta_0 * x_0 + /theta_1 * x_1 +/theta_2 * x_2 …, 然后把线性组合后的值代入Logistic Function(又叫sigmoid function)映射成[0,1]内的某个值。Logistic Function的图像如下

当z->正无穷大时,函数值->1;当z->负无穷大时,函数值->0.因此新的hypotheses函数h_/theta(x)总是在[0,1]这个区间内。我们同样增加一个feature x_0 = 1以方便向量表示。Logistic Function的导数可以用原函数来表示,即

这个结论在后面学习参数/theta的时候还会使用到。

2  用最大似然估计和梯度上升法学习Logistic Regression的模型参数/theta

给定新的hypotheses函数h_/theta(x),我们如何根据训练样本来学习参数/theta呢?我们可以考虑从概率假设的角度使用最大似然估计MLE来fit data(MLE等价于LMS算法中的最小化cost function)。我们假设:

即用hypotheses函数h_/theta(x)来表示y=1的概率; 1-h_/theta(x)来表示y=0的概率.这个概率假设可以写成如下更紧凑的形式

假设我们观察到了m个训练样本,它们的生成过程独立同分布,那么我们可以写出似然函数

取对数后变成log-likelihood

我们现在要最大化log-likelihood求参数/theta. 换一种角度理解,就是此时cost function J = - l(/theta),我们需要最小化cost function 即- l(/theta)。

类似于我们在学习Linear Regression参数时用梯度下降法,这里我们可以采用梯度上升法最大化log-likelihood,假设我们只有一个训练样本(x,y),那么可以得到SGA(增量梯度上升)的update rule

里面用到了logistic function的导数的性质 即 g’ = g(1-g).于是我们可以得到参数更新rule

这里是不断的加上一个量,因为是梯度上升。/alpha是learning rate. 从形式上看和Linear Regression的参数 LMS update rule是一样的,但是实质是不同的,因此假设的模型函数h_/theta(x)不同。在Linear Regression中只是所有feature的线性组合;在Logistic Regression中是先把所有feature线性组合,然后在带入Logistic Function映射到区间[0,1]内,即此时h_/theta(x)就不再是一个线性函数。其实这两种算法都是Generalized Linear Models的特例。

另外也可以考虑用牛顿迭代法来求参数更新的update rule。牛顿迭代法是一种求方程f(/theta) = 0的根的方法,即函数f(/theta)与x轴的交点坐标值。从某个初始/theta开始,按照下式不断迭代更新/theta,会发现/theta的值越来越逼近真实的方程的根,即更新rule是

这样我们可以用数值解法求方程的根。更多关于牛顿迭代法的讲解可以参考维基百科 http://en.wikipedia.org/wiki/Newton%27s_method,下面这张图解释非常形象,来自维基百科。

File:NewtonIteration Ani.gif

应用到求Logistic Regression的参数/theta的更新rule中就是,我们要求l(/theta)的一阶导数等于0得到的方程的根,即l‘(/theta) = 0。根据牛顿法,需要按照下面的rule来更新参数/theta,

而/theta是n维向量(每一维对应一个feature),针对向量求导,上面的式子就变成了

H是Hessian矩阵,相当于二阶偏导数,是一个n*n的矩阵,元素的(i,j)的计算方法如下

后面是l(/theta)对/theta_j的偏导数。

牛顿法通常可以比batch gradient descent方法更快收敛,经过更少次数的迭代就可以接近cost function最小的参数值。但是牛顿法的每一次迭代的计算量更大,因为需要对n*n的Hessian矩阵求逆矩阵。但是只要n不是太大,牛顿法都可以更快的收敛。当我们用牛顿法来最大化Logistic Regression的log likelihood,这种方法也叫Fisher scoring方法。

3 编程实战

(注:本部分编程习题全部来自Andrew Ng机器学习网上公开课)

3.1 Logistic Regression的Matlab实现

假定我们是大学录取委员会的成员,给定学生的两门课程成绩和是否录取的历史记录,需要对新的学生是否应该录取做binary classification。所以每个学生用两个feature来描述,分别对应两门课程成绩。现在根据训练样本trian一个 Logistic Regression(decision boundary)model,然后对新的学生测试样本做分类。主程序如下:

[plain] view plain copy PRint?在CODE上查看代码片%% Initialization  clear ; close all; clc    %% Load Data  %  The first two columns contains the exam scores and the third column  %  contains the label.    data = load(‘ex2data1.txt’);  X = data(:, [1, 2]); y = data(:, 3);    %% ==================== Part 1: Plotting ====================  %  We start the exercise by first plotting the data to understand the   %  the problem we are working with.    fprintf([‘Plotting data with + indicating (y = 1) examples and o ’ …           ‘indicating (y = 0) examples./n’]);    plotData(X, y);    % Put some labels   hold on;  % Labels and Legend  xlabel(‘Exam 1 score’)  ylabel(‘Exam 2 score’)    % Specified in plot order  legend(‘Admitted’, ‘Not admitted’)  hold off;    fprintf(‘/nProgram paused. Press enter to continue./n’);  pause;      %% ============ Part 2: Compute Cost and Gradient ============  %  In this part of the exercise, you will implement the cost and gradient  %  for logistic regression. You neeed to complete the code in   %  costFunction.m    %  Setup the data matrix appropriately, and add ones for the intercept term  [m, n] = size(X);    % Add intercept term to x and X_test  X = [ones(m, 1) X];    % Initialize fitting parameters  initial_theta = zeros(n + 1, 1);    % Compute and display initial cost and gradient  [cost, grad] = costFunction(initial_theta, X, y);    fprintf(‘Cost at initial theta (zeros): %f/n’, cost);  fprintf(‘Gradient at initial theta (zeros): /n’);  fprintf(‘ %f /n’, grad);    fprintf(‘/nProgram paused. Press enter to continue./n’);  pause;      %% ============= Part 3: Optimizing using fminunc  =============  %  In this exercise, you will use a built-in function (fminunc) to find the  %  optimal parameters theta.    %  Set options for fminunc  options = optimset(‘GradObj’, ‘on’, ‘MaxIter’, 400);    %  Run fminunc to obtain the optimal theta  %  This function will return theta and the cost   [theta, cost] = …      fminunc(@(t)(costFunction(t, X, y)), initial_theta, options);    % Print theta to screen  fprintf(‘Cost at theta found by fminunc: %f/n’, cost);  fprintf(‘theta: /n’);  fprintf(‘ %f /n’, theta);    % Plot Boundary  plotDecisionBoundary(theta, X, y);    % Put some labels   hold on;  % Labels and Legend  xlabel(‘Exam 1 score’)  ylabel(‘Exam 2 score’)    % Specified in plot order  legend(‘Admitted’, ‘Not admitted’)  hold off;    fprintf(‘/nProgram paused. Press enter to continue./n’);  pause;    %% ============== Part 4: Predict and Accuracies ==============  %  After learning the parameters, you’ll like to use it to predict the outcomes  %  on unseen data. In this part, you will use the logistic regression model  %  to predict the probability that a student with score 45 on exam 1 and   %  score 85 on exam 2 will be admitted.  %  %  Furthermore, you will compute the training and test set accuracies of   %  our model.  %  %  Your task is to complete the code in predict.m    %  Predict probability for a student with score 45 on exam 1   %  and score 85 on exam 2     prob = sigmoid([1 45 85] * theta);  fprintf([‘For a student with scores 45 and 85, we predict an admission ’ …           ‘probability of %f/n/n’], prob);    % Compute accuracy on our training set  p = predict(theta, X);    fprintf(‘Train Accuracy: %f/n’, mean(double(p == y)) * 100);    fprintf(‘/nProgram paused. Press enter to continue./n’);  pause;  
%% Initializationclear ; close all; clc%% Load Data%  The first two columns contains the exam scores and the third column%  contains the label.data = load('ex2data1.txt');X = data(:, [1, 2]); y = data(:, 3);%% ==================== Part 1: Plotting ====================%  We start the exercise by first plotting the data to understand the %  the problem we are working with.fprintf(['Plotting data with + indicating (y = 1) examples and o ' ...         'indicating (y = 0) examples./n']);plotData(X, y);% Put some labels hold on;% Labels and Legendxlabel('Exam 1 score')ylabel('Exam 2 score')% Specified in plot orderlegend('Admitted', 'Not admitted')hold off;fprintf('/nProgram paused. Press enter to continue./n');pause;%% ============ Part 2: Compute Cost and Gradient ============%  In this part of the exercise, you will implement the cost and gradient%  for logistic regression. You neeed to complete the code in %  costFunction.m%  Setup the data matrix appropriately, and add ones for the intercept term[m, n] = size(X);% Add intercept term to x and X_testX = [ones(m, 1) X];% Initialize fitting parametersinitial_theta = zeros(n + 1, 1);% Compute and display initial cost and gradient[cost, grad] = costFunction(initial_theta, X, y);fprintf('Cost at initial theta (zeros): %f/n', cost);fprintf('Gradient at initial theta (zeros): /n');fprintf(' %f /n', grad);fprintf('/nProgram paused. Press enter to continue./n');pause;%% ============= Part 3: Optimizing using fminunc  =============%  In this exercise, you will use a built-in function (fminunc) to find the%  optimal parameters theta.%  Set options for fminuncoptions = optimset('GradObj', 'on', 'MaxIter', 400);%  Run fminunc to obtain the optimal theta%  This function will return theta and the cost [theta, cost] = ...    fminunc(@(t)(costFunction(t, X, y)), initial_theta, options);% Print theta to screenfprintf('Cost at theta found by fminunc: %f/n', cost);fprintf('theta: /n');fprintf(' %f /n', theta);% Plot BoundaryplotDecisionBoundary(theta, X, y);% Put some labels hold on;% Labels and Legendxlabel('Exam 1 score')ylabel('Exam 2 score')% Specified in plot orderlegend('Admitted', 'Not admitted')hold off;fprintf('/nProgram paused. Press enter to continue./n');pause;%% ============== Part 4: Predict and Accuracies ==============%  After learning the parameters, you'll like to use it to predict the outcomes%  on unseen data. In this part, you will use the logistic regression model%  to predict the probability that a student with score 45 on exam 1 and %  score 85 on exam 2 will be admitted.%%  Furthermore, you will compute the training and test set accuracies of %  our model.%%  Your task is to complete the code in predict.m%  Predict probability for a student with score 45 on exam 1 %  and score 85 on exam 2 prob = sigmoid([1 45 85] * theta);fprintf(['For a student with scores 45 and 85, we predict an admission ' ...         'probability of %f/n/n'], prob);% Compute accuracy on our training setp = predict(theta, X);fprintf('Train Accuracy: %f/n', mean(double(p == y)) * 100);fprintf('/nProgram paused. Press enter to continue./n');pause;首先可以在feature(x_1,x_2)平面上visualize出训练数据集, 对正实例和负实例用不同记号表示如下

图中横纵坐标对应两门课程成绩,两类点分别对应录取的学生和不录取的学生。 画图的code如下

[plain] view plain copy print?在CODE上查看代码片function plotData(X, y)  %PLOTDATA Plots the data points X and y into a new figure   %   PLOTDATA(x,y) plots the data points with + for the positive examples  %   and o for the negative examples. X is assumed to be a Mx2 matrix.    % Create New Figure  figure; hold on;  % ====================== YOUR CODE HERE ======================  % Instructions: Plot the positive and negative examples on a  %               2D plot, using the option ‘k+’ for the positive  %               examples and ‘ko’ for the negative examples.    % find all the indices of postive and negtive training example  pos = find(y == 1); neg = find(y == 0);   plot(X(pos,1), X(pos,2), ‘k+’, ‘LineWidth’, 2, ‘MarkerSize’, 7);  plot(X(neg,1), X(neg,2), ‘ko’, ‘LineWidth’, 2, ‘MarkerSize’, 7, ‘MarkerFaceColor’, ‘y’);  % =========================================================================  hold off;    end  
function plotData(X, y)%PLOTDATA Plots the data points X and y into a new figure %   PLOTDATA(x,y) plots the data points with + for the positive examples%   and o for the negative examples. X is assumed to be a Mx2 matrix.% Create New Figurefigure; hold on;% ====================== YOUR CODE HERE ======================% Instructions: Plot the positive and negative examples on a%               2D plot, using the option 'k+' for the positive%               examples and 'ko' for the negative examples.% find all the indices of postive and negtive training examplepos = find(y == 1); neg = find(y == 0); plot(X(pos,1), X(pos,2), 'k+', 'LineWidth', 2, 'MarkerSize', 7);plot(X(neg,1), X(neg,2), 'ko', 'LineWidth', 2, 'MarkerSize', 7, 'MarkerFaceColor', 'y');% =========================================================================hold off;end然后可以实现sigmoid函数如下,用于将feature的线性组合或者非线性组合映射到[0.1]之间

[plain] view plain copy print?在CODE上查看代码片function g = sigmoid(z)  %SIGMOID Compute sigmoid functoon  %   J = SIGMOID(z) computes the sigmoid of z.    % You need to return the following variables correctly   g = zeros(size(z));    % ====================== YOUR CODE HERE ======================  % Instructions: Compute the sigmoid of each value of z (z can be a matrix,  %               vector or scalar).  g = 1.0 ./ (1.0 + exp(-z));  % =============================================================    end  
function g = sigmoid(z)%SIGMOID Compute sigmoid functoon%   J = SIGMOID(z) computes the sigmoid of z.% You need to return the following variables correctly g = zeros(size(z));% ====================== YOUR CODE HERE ======================% Instructions: Compute the sigmoid of each value of z (z can be a matrix,%               vector or scalar).g = 1.0 ./ (1.0 + exp(-z));% =============================================================endsigmoid函数中z与g(z)是正相关的,z越大,g(z)越接近1,反之g(z)越接近0.

下面我们可以实现Logistic Regression的代价函数(cost function) 和梯度函数(gradient),分别如下

cost function可以认为是生成训练数据的negative log likelihood, 最小化cost function等价于最大似然估计MLE。下面梯度函数的推导过程详见本文第二部分。这里用的是batch gradient descent,即每更新一个theta_j都需要扫描所有m个训练样本。代码实现如下

[plain] view plain copy print?在CODE上查看代码片function [J, grad] = costFunction(theta, X, y)  %COSTFUNCTION Compute cost and gradient for logistic regression  %   J = COSTFUNCTION(theta, X, y) computes the cost of using theta as the  %   parameter for logistic regression and the gradient of the cost  %   w.r.t. to the parameters.    % Initialize some useful values  m = length(y); % number of training examples    % You need to return the following variables correctly   % ====================== YOUR CODE HERE ======================  % Instructions: Compute the cost of a particular choice of theta.  %               You should set J to the cost.  %               Compute the partial derivatives and set grad to the partial  %               derivatives of the cost w.r.t. each parameter in theta  %  % Note: grad should have the same dimensions as theta  % define cost function and gradient   % use fminunc function to solve the minimul value   hx = sigmoid(X * theta);   J = (1.0/m) * sum(-y .* log(hx) - (1.0 - y) .* log(1.0 - hx));   grad = (1.0/m) .* X’ * (hx - y);     % =============================================================    end  
function [J, grad] = costFunction(theta, X, y)%COSTFUNCTION Compute cost and gradient for logistic regression%   J = COSTFUNCTION(theta, X, y) computes the cost of using theta as the%   parameter for logistic regression and the gradient of the cost%   w.r.t. to the parameters.% Initialize some useful valuesm = length(y); % number of training examples% You need to return the following variables correctly % ====================== YOUR CODE HERE ======================% Instructions: Compute the cost of a particular choice of theta.%               You should set J to the cost.%               Compute the partial derivatives and set grad to the partial%               derivatives of the cost w.r.t. each parameter in theta%% Note: grad should have the same dimensions as theta% define cost function and gradient % use fminunc function to solve the minimul value hx = sigmoid(X * theta); J = (1.0/m) * sum(-y .* log(hx) - (1.0 - y) .* log(1.0 - hx)); grad = (1.0/m) .* X' * (hx - y);% =============================================================end可以求出初始情况下(initial_theta = zeros(n + 1, 1))的cost function 和gradient。

[plain] view plain copy print?在CODE上查看代码片Cost at initial theta (zeros): 0.693147  Gradient at initial theta (zeros):    -0.100000    -12.009217    -11.262842     Program paused. Press enter to continue.  
Cost at initial theta (zeros): 0.693147Gradient at initial theta (zeros):  -0.100000  -12.009217  -11.262842 Program paused. Press enter to continue.然后用Matlab内置的fminunc函数来求解cost function的最小值和对应的参数值/theta.这是一个无约束的优化问题,可以用fminunc函数求解,不必自己实现gradient descent(自己实现也很容易但是用这个函数更方便)。查阅下doc,其支持如下的输入输出

[x,fval] = fminunc(fun,x0,options)

input 中 fun是定义待优化的cost func和gradient(可选)的函数,x0是自变量初始值,options是选项设置,在Logistic Regression的实现中相关语句是

[plain] view plain copy print?在CODE上查看代码片%  Set options for fminunc  options = optimset(‘GradObj’, ‘on’, ‘MaxIter’, 400);    %  Run fminunc to obtain the optimal theta  %  This function will return theta and the cost   [theta, cost] = fminunc(@(t)(costFunction(t, X, y)), initial_theta, options);  
%  Set options for fminuncoptions = optimset('GradObj', 'on', 'MaxIter', 400);%  Run fminunc to obtain the optimal theta%  This function will return theta and the cost [theta, cost] = fminunc(@(t)(costFunction(t, X, y)), initial_theta, options);

optimset提供了两个参数选项分别是是否提供gradient和迭代次数。下面调用fminunc是第一个参数@(t)是一个匿名函数的函数句柄,后面costFunction(t, X, y)是函数定义,具体实现在对应的.m函数文件中。

output中是最优参数值x以及最优cost function的值。程序输出如下

[plain] view plain copy print?在CODE上查看代码片Local minimum possible.    fminunc stopped because the final change in function value relative to   its initial value is less than the default value of the function tolerance.    <stopping criteria details>    Cost at theta found by fminunc: 0.203506  theta:    -24.932905    0.204407    0.199617   
Local minimum possible.fminunc stopped because the final change in function value relative to its initial value is less than the default value of the function tolerance.<stopping criteria details>Cost at theta found by fminunc: 0.203506theta:  -24.932905  0.204407  0.199617 这样就找到了最优的参数theta值和对应的cost function值。将最优参数值对应的decision boundary画出来就是

下面可以对新的学生测试样本做预测。并且,可以利用decision对所有训练样本中的学生的录取结果做预测,然后对比实际录取情况计算train accuracy 。给定一个学生的两门课程成绩的feature,我们可以得到其被录取的概率即g(/theta’ * x),然后大于等于0.5的认为应该录取,否则不录取。实现如下

[plain] view plain copy print?在CODE上查看代码片function p = predict(theta, X)  %PREDICT Predict whether the label is 0 or 1 using learned logistic   %regression parameters theta  %   p = PREDICT(theta, X) computes the predictions for X using a   %   threshold at 0.5 (i.e., if sigmoid(theta’*x) >= 0.5, predict 1)    m = size(X, 1); % Number of training examples    % You need to return the following variables correctly  p = zeros(m, 1);    % ====================== YOUR CODE HERE ======================  % Instructions: Complete the following code to make predictions using  %               your learned logistic regression parameters.   %               You should set p to a vector of 0’s and 1’s  %    p = sigmoid(X* theta);  index_1 = find(p >= 0.5);  index_0 = find(p < 0.5);    p(index_1) = ones(size(index_1));  p(index_0) = zeros(size(index_0));    % =========================================================================  end  
function p = predict(theta, X)%PREDICT Predict whether the label is 0 or 1 using learned logistic %regression parameters theta%   p = PREDICT(theta, X) computes the predictions for X using a %   threshold at 0.5 (i.e., if sigmoid(theta'*x) >= 0.5, predict 1)m = size(X, 1); % Number of training examples% You need to return the following variables correctlyp = zeros(m, 1);% ====================== YOUR CODE HERE ======================% Instructions: Complete the following code to make predictions using%               your learned logistic regression parameters. %               You should set p to a vector of 0's and 1's%p = sigmoid(X* theta);index_1 = find(p >= 0.5);index_0 = find(p < 0.5);p(index_1) = ones(size(index_1));p(index_0) = zeros(size(index_0));% =========================================================================end程序输出如下

[plain] view plain copy print?在CODE上查看代码片For a student with scores 45 and 85, we predict an admission probability of 0.774322    Train Accuracy: 89.000000  
For a student with scores 45 and 85, we predict an admission probability of 0.774322Train Accuracy: 89.000000可以知道对于取得45和85的学生录取的概率是0.774322,train出的model对89%的训练样本的预测结果是正确的。

3.2 Regularized Logistic Regression的Matlab实现

现在我们换一个数据集,这个数据集的特征是训练样本不再线性可分。比如某公司生产的芯片需要经过两次质量检查,然后质检员根据两次质量检查的结果决定是否通过质检。给定一些历史的质检结果和是否通过质检的决策结果,需要我们对新的测试样本是否可以通过质检做预测。这个问题中,芯片也是用两个feature来描述,即两次检查的结果。我们同样可以基于训练数据train 一个Logistic Regression model,然后根据model对测试样本做预测。主程序如下

[plain] view plain copy print?在CODE上查看代码片%% Initialization  clear ; close all; clc    %% Load Data  %  The first two columns contains the X values and the third column  %  contains the label (y).    data = load(‘ex2data2.txt’);  X = data(:, [1, 2]); y = data(:, 3);    plotData(X, y);    % Put some labels   hold on;    % Labels and Legend  xlabel(‘Microchip Test 1’)  ylabel(‘Microchip Test 2’)    % Specified in plot order  legend(‘y = 1’, ‘y = 0’)  hold off;      %% =========== Part 1: Regularized Logistic Regression ============  %  In this part, you are given a dataset with data points that are not  %  linearly separable. However, you would still like to use logistic   %  regression to classify the data points.   %  %  To do so, you introduce more features to use – in particular, you add  %  polynomial features to our data matrix (similar to polynomial  %  regression).  %    % Add Polynomial Features    % Note that mapFeature also adds a column of ones for us, so the intercept  % term is handled  X = mapFeature(X(:,1), X(:,2));    % Initialize fitting parameters  initial_theta = zeros(size(X, 2), 1);    % Set regularization parameter lambda to 1  lambda = 1;    % Compute and display initial cost and gradient for regularized logistic  % regression  [cost, grad] = costFunctionReg(initial_theta, X, y, lambda);    fprintf(‘Cost at initial theta (zeros): %f/n’, cost);    fprintf(‘/nProgram paused. Press enter to continue./n’);  pause;    %% ============= Part 2: Regularization and Accuracies =============  %  Optional Exercise:  %  In this part, you will get to try different values of lambda and   %  see how regularization affects the decision coundart  %  %  Try the following values of lambda (0, 1, 10, 100).  %  %  How does the decision boundary change when you vary lambda? How does  %  the training set accuracy vary?  %    % Initialize fitting parameters  initial_theta = zeros(size(X, 2), 1);    % Set regularization parameter lambda to 1 (you should vary this)  lambda = 100;    % Set Options  options = optimset(‘GradObj’, ‘on’, ‘MaxIter’, 400);    % Optimize  [theta, J, exit_flag] = …      fminunc(@(t)(costFunctionReg(t, X, y, lambda)), initial_theta, options);    % Plot Boundary  plotDecisionBoundary(theta, X, y);  hold on;  title(sprintf(‘lambda = %g’, lambda))    % Labels and Legend  xlabel(‘Microchip Test 1’)  ylabel(‘Microchip Test 2’)    legend(‘y = 1’, ‘y = 0’, ‘Decision boundary’)  hold off;    % Compute accuracy on our training set  p = predict(theta, X);    fprintf(‘Train Accuracy: %f/n’, mean(double(p == y)) * 100);  
%% Initializationclear ; close all; clc%% Load Data%  The first two columns contains the X values and the third column%  contains the label (y).data = load('ex2data2.txt');X = data(:, [1, 2]); y = data(:, 3);plotData(X, y);% Put some labels hold on;% Labels and Legendxlabel('Microchip Test 1')ylabel('Microchip Test 2')% Specified in plot orderlegend('y = 1', 'y = 0')hold off;%% =========== Part 1: Regularized Logistic Regression ============%  In this part, you are given a dataset with data points that are not%  linearly separable. However, you would still like to use logistic %  regression to classify the data points. %%  To do so, you introduce more features to use -- in particular, you add%  polynomial features to our data matrix (similar to polynomial%  regression).%% Add Polynomial Features% Note that mapFeature also adds a column of ones for us, so the intercept% term is handledX = mapFeature(X(:,1), X(:,2));% Initialize fitting parametersinitial_theta = zeros(size(X, 2), 1);% Set regularization parameter lambda to 1lambda = 1;% Compute and display initial cost and gradient for regularized logistic% regression[cost, grad] = costFunctionReg(initial_theta, X, y, lambda);fprintf('Cost at initial theta (zeros): %f/n', cost);fprintf('/nProgram paused. Press enter to continue./n');pause;%% ============= Part 2: Regularization and Accuracies =============%  Optional Exercise:%  In this part, you will get to try different values of lambda and %  see how regularization affects the decision coundart%%  Try the following values of lambda (0, 1, 10, 100).%%  How does the decision boundary change when you vary lambda? How does%  the training set accuracy vary?%% Initialize fitting parametersinitial_theta = zeros(size(X, 2), 1);% Set regularization parameter lambda to 1 (you should vary this)lambda = 100;% Set Optionsoptions = optimset('GradObj', 'on', 'MaxIter', 400);% Optimize[theta, J, exit_flag] = ...    fminunc(@(t)(costFunctionReg(t, X, y, lambda)), initial_theta, options);% Plot BoundaryplotDecisionBoundary(theta, X, y);hold on;title(sprintf('lambda = %g', lambda))% Labels and Legendxlabel('Microchip Test 1')ylabel('Microchip Test 2')legend('y = 1', 'y = 0', 'Decision boundary')hold off;% Compute accuracy on our training setp = predict(theta, X);fprintf('Train Accuracy: %f/n', mean(double(p == y)) * 100);首先同样是visualize 数据如下

可以看出此时两类样本不再线性可分。即找不到一条直线很好的区分正样本和负样本,如果直接应用Logistic Regression,效果肯定会不好,得出的cost function最优值会比较大。此时,就需要增加feature dimension, 参数/theta的dimension也同样增加,更多的参数可以描述更丰富的样本信息。首先做feature mapping,比如基于x1和x2生成阶为6以下的所有多项式组合,一共有28项(1+2+3+ … + 7 = 28)如下

实现如下

[plain] view plain copy print?在CODE上查看代码片function out = mapFeature(X1, X2)  % MAPFEATURE Feature mapping function to polynomial features  %  %   MAPFEATURE(X1, X2) maps the two input features  %   to quadratic features used in the regularization exercise.  %  %   Returns a new feature array with more features, comprising of   %   X1, X2, X1.^2, X2.^2, X1*X2, X1*X2.^2, etc..  %  %   Inputs X1, X2 must be the same size  %    degree = 6;  out = ones(size(X1(:,1)));  for i = 1:degree      for j = 0:i          out(:, end+1) = (X1.^(i-j)).*(X2.^j);      end  end    end  
function out = mapFeature(X1, X2)% MAPFEATURE Feature mapping function to polynomial features%%   MAPFEATURE(X1, X2) maps the two input features%   to quadratic features used in the regularization exercise.%%   Returns a new feature array with more features, comprising of %   X1, X2, X1.^2, X2.^2, X1*X2, X1*X2.^2, etc..%%   Inputs X1, X2 must be the same size%degree = 6;out = ones(size(X1(:,1)));for i = 1:degree    for j = 0:i        out(:, end+1) = (X1.^(i-j)).*(X2.^j);    endendend这样通过feature mapping,原始2维feature被映射到的新的28维feature空间,相应的/theta也变成了29维(包括theta_0).在这样更高维的feature vector上面训练出来的Logistic Regression Classifier可以有更复杂的decision boundary,不再是一条直线。然而,更多的参数更复杂的decision boundary也容易造成model over-fitting,即过拟合,造成model的泛化能力差。因此我们需要在cost function中引入 regularization term正则项来解决over fitting的问题。

带regularization term的Logistic Regression的cost function 定义如下

我们在原始cost function后面多加了一项,即参数/theta_j的平方和除以2m,参数lambda控制regularization term的权重。lambda越大,regularization term权重越大,越容易under fit;反之,regularization term权重越小,越容易over fit.但是我们不应该对参数/theta_0进行regularization。cost function的梯度是一个n+1维向量(含j_0),每一维的计算公式是

可以发现仅仅是对j>=1的情况后面多加了一项regularization term对/theta_j求导的结果。因此带regularization的Logistic Regression的cost function和gradient 实现如下

[plain] view plain copy print?在CODE上查看代码片function [J, grad] = costFunctionReg(theta, X, y, lambda)  %COSTFUNCTIONREG Compute cost and gradient for logistic regression with regularization  %   J = COSTFUNCTIONREG(theta, X, y, lambda) computes the cost of using  %   theta as the parameter for regularized logistic regression and the  %   gradient of the cost w.r.t. to the parameters.     % Initialize some useful values  m = length(y); % number of training examples    % You need to return the following variables correctly   J = 0;  grad = zeros(size(theta));    % ====================== YOUR CODE HERE ======================  % Instructions: Compute the cost of a particular choice of theta.  %               You should set J to the cost.  %               Compute the partial derivatives and set grad to the partial  %               derivatives of the cost w.r.t. each parameter in theta   hx = sigmoid(X * theta);   J = (1.0/m) * sum(-y .* log(hx) - (1.0 - y) .* log(1.0 - hx)) + lambda / (2 * m) * norm(theta([2:end]))^2;      reg = (lambda/m) .* theta;   reg(1) = 0;   grad = (1.0/m) .* X’ * (hx - y) + reg;  % =============================================================    end  
function [J, grad] = costFunctionReg(theta, X, y, lambda)%COSTFUNCTIONREG Compute cost and gradient for logistic regression with regularization%   J = COSTFUNCTIONREG(theta, X, y, lambda) computes the cost of using%   theta as the parameter for regularized logistic regression and the%   gradient of the cost w.r.t. to the parameters. % Initialize some useful valuesm = length(y); % number of training examples% You need to return the following variables correctly J = 0;grad = zeros(size(theta));% ====================== YOUR CODE HERE ======================% Instructions: Compute the cost of a particular choice of theta.%               You should set J to the cost.%               Compute the partial derivatives and set grad to the partial%               derivatives of the cost w.r.t. each parameter in theta hx = sigmoid(X * theta); J = (1.0/m) * sum(-y .* log(hx) - (1.0 - y) .* log(1.0 - hx)) + lambda / (2 * m) * norm(theta([2:end]))^2; reg = (lambda/m) .* theta; reg(1) = 0; grad = (1.0/m) .* X' * (hx - y) + reg;% =============================================================end其中norm是对向量theta的后面n维求模,用于计算cost function 中的regularization term。cost function的minimize求解仍然使用fminunc函数,与3.1部分一样。当lambda = 1时,得到的decision boundary如下

Train Accuracy是 83.050847。现在我们把lambda调小,比如设为0.0001,也就是减小regularization term的权重,就会发现分类器几乎可以把所有training data分类正确,但是得到一条很复杂的decision boundary,因此overfitting

Train Accuracy是86.440678但是模型的泛化能力变差。比如对于x =(0.25,1.5)的芯片会被预测为通过,这显然和traning数据表现出的特征不符合。相反,如果lambda太大,比如100,那么regularization term权重过大,model容易under fit,如下图所示,Train Accuracy只有61.016949。

因此选取合适的regularization term的weight对于得到既fit data又有良好泛化能力的model是很重要的。


发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表