#include <iostream>#include <stdio.h>#include <vector>#include <string>#include <queue>#include <unordered_map>#include <sstream>using namespace std;/*问题:Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors.OJ's undirected graph serialization:Nodes are labeled uniquely.We use # as a separator for each node, and , as a separator for node label and each neighbor of the node.As an example, consider the serialized graph {0,1,2#1,2#2,2}.The graph has a total of three nodes, and therefore contains three parts as separated by #.First node is labeled as 0. Connect node 0 to both nodes 1 and 2.Second node is labeled as 1. Connect node 1 to node 2.Third node is labeled as 2. Connect node 2 to node 2 (itself), thus forming a self-cycle.Visually, the graph looks like the following: 1 / / / / 0 --- 2 / / /_/分析:题目是想拷贝一个无向图。具体要求是对每个结点需要求出其所有邻接点,并把所有邻接点存储到该结点自身的成员变量中。可能存在某些结点指向自身,这种情况,当前结点自身是否存储?需要的。参见序列化结果对于结点0:邻接点为1,2,即其成员变量只需要存储这两个结点对于结点结点1:给定了邻接点2,由于0又和2连接,因此虽然结点1存储的邻接点为2,但是却可以连接到0对于结点2:自循环,所以插入结点2现在给定一个有向图,肯定是比如给定初始结点0,找到邻接点为1,2,输出:0,1,2遍历不等于自身的邻居结点(防止陷入死循环)1:得到1的邻接点为2(也可能包含了0,只不过已经访问过,过滤),输出:1,2遍历邻接点2:输出:2,2现在猜这个图原始存的时候比如对于结点1,是否存储了0?应该是没有存储,题目的意思估计就是让我们存储一下。否则题目变成了结点的直接new和copy,这个就一个意思,考的是图的遍历。既然是拷贝,应该是一样的。其实考的知识点就是图的遍历,如果用广度优先,队列来做,设定一个访问标记,如果当前从队列中弹出的结点没有访问过,就遍历其所有的邻居结点,new出和其一样的;邻居结点和当前结点对每个未访问的邻居结点,压入到队列,最后直到队列为空,结束。这里的关键问题在于比如遍历结点0:结点0没有访问过,新建新的结点0,设置已经访问标记,可能需要设定两个队列,一个队列是原有队列,存储广度优先结果;另一个队列是存放已经建立的结点题目说:每个结点的标记是唯一的,直接用一个标记<int,Node*>来做输入:0 1 2#1 2#2 2输出:0 1 2#1 2#2 2关键:1采用广度优先搜索,建立label指向已经建立好结点的映射。队列中弹出的结点没有被访问过,设置访问标记 如果该结点的还没有在拷贝图中建立,就建立 获取结点的邻居结点,遍历每个邻居结点,如果拷贝图中对应邻居结点没有建立,也建立 如果邻居结点已经访问过,就过滤;否则,压入队列*/struct UndirectedGraphNode { int label; vector<UndirectedGraphNode *> neighbors; UndirectedGraphNode(int x) : label(x) {};};class Solution {public: UndirectedGraphNode* bfs(UndirectedGraphNode *node,unordered_map<int , UndirectedGraphNode*>& hasBuilt) { if(!node) { return NULL; } queue<UndirectedGraphNode *> nodes; nodes.push(node); UndirectedGraphNode* curNode; unordered_map<UndirectedGraphNode* , bool> visited; vector<UndirectedGraphNode *> neighbours; UndirectedGraphNode* root = NULL; UndirectedGraphNode* nextNode = NULL; bool isFirst = true; UndirectedGraphNode* newNode = NULL; while(!nodes.empty()) { curNode = nodes.front(); nodes.pop(); if(!curNode) { continue; } //如果当前结点已经访问过,直接跳过 if(visited.find(curNode) != visited.end()) { continue; } visited[curNode] = true;//设置当前结点已经访问 //如果当前访问的结点没有建立 if(hasBuilt.find(curNode->label) == hasBuilt.end()) { //这里有一个问题,结点1已经作为邻居结点被访问过了了,被建立过了,这里又要新建一遍 newNode = new UndirectedGraphNode(curNode->label); hasBuilt[curNode->label] = newNode; } else { newNode = hasBuilt[curNode->label] ; } //保存首结点,用于返回 if(isFirst) { root = newNode; isFirst = false; } vector<UndirectedGraphNode* > myNeighbours; neighbours = curNode->neighbors; if(neighbours.empty()) { newNode->neighbors = myNeighbours; continue; } int size = neighbours.size(); for(int i = 0 ; i < size ; i++) { nextNode = neighbours.at(i); //如果邻居结点为空,直接跳过 if(!nextNode) { myNeighbours.push_back(NULL); continue; } //判断邻居结点是否已经建立,如果没有建立,才建立。这里有个问题,结点2其实已经建立过了 if(hasBuilt.find(nextNode->label) == hasBuilt.end()) { UndirectedGraphNode* tempNode = new UndirectedGraphNode(nextNode->label); myNeighbours.push_back(tempNode); hasBuilt[nextNode->label] = tempNode; } else { myNeighbours.push_back(hasBuilt[nextNode->label]); } //如果邻居结点已经访问过,就不压入队列 if(visited.find(nextNode) != visited.end()) { continue; } nodes.push(nextNode); } //所有结点建立好之后,下面设定邻居结点集合 newNode->neighbors = myNeighbours; } return root; } UndirectedGraphNode *cloneGraph(UndirectedGraphNode *node) { unordered_map<int , UndirectedGraphNode*> hasBuilt; UndirectedGraphNode* root = bfs(node, hasBuilt); _hasBuilt = hasBuilt; _root = root; return root; }public: UndirectedGraphNode* _root; unordered_map<int , UndirectedGraphNode*> _hasBuilt;};vector<string> split(string& str , string& splitStr){ vector<string> result; if(str.empty()) { return result; } if(splitStr.empty()) { result.push_back(str); return result; } int beg = 0; size_t pos = str.find(splitStr); string partialStr; while(string::npos != pos) { partialStr = str.substr(beg , pos - beg); if(!partialStr.empty()) { result.push_back(partialStr); } beg = pos + splitStr.length(); pos = str.find(splitStr , beg); } //防止 aa#aa,这种最后一次找不到 partialStr = str.substr(beg , pos - beg); if(!partialStr.empty()) { result.push_back(partialStr); } return result;}//按"# "号分割,然后按空格分割,0 1 2#1 2#2 2UndirectedGraphNode* buildGraph(string& str , unordered_map<int,UndirectedGraphNode* >& hasBuilt){ vector<string> result = split(str , string("#")); if(result.empty()) { return NULL; } vector<vector<string> > lines; int size = result.size(); for(int i = 0 ; i < size ; i++) { vector<string> Words = split(result.at(i) , string(" ")); lines.push_back(words); } if(lines.empty()) { return NULL; } //接下来找到所有的结点: 0 1 2 , 1 2 , 2 2 int lineSize = lines.size(); int wordSize; UndirectedGraphNode* node = NULL ; for(int i = 0 ; i < lineSize ; i++ ) { wordSize= lines.at(i).size(); UndirectedGraphNode* begNode = NULL; vector<UndirectedGraphNode*> neighbours; for(int j = 0 ; j < wordSize ; j++) { int value = atoi(lines.at(i).at(j).c_str()); //如果没有建立 if(hasBuilt.find(value) == hasBuilt.end()) { node = new UndirectedGraphNode(value); hasBuilt[value] = node; } else { node = hasBuilt[value]; } //确定结点指向 if(j) { neighbours.push_back(node); } //根节点,需要建立指向 else { begNode = node; } } begNode->neighbors = neighbours; } int value = atoi( lines.at(0).at(0).c_str()); return hasBuilt[value];}//如何递归删除图的所有结点,广度优先搜索(有环),无需这样删除,之前不是保存了建立//结点的map吗。删除这个void deleteGraph(unordered_map<int , UndirectedGraphNode* > hasBuilt){ for(unordered_map<int , UndirectedGraphNode*>::iterator it = hasBuilt.begin() ; it != hasBuilt.end() ; it++) { delete it->second; it->second = NULL; }}//如何构建这个有向图string myBFS(UndirectedGraphNode* node){ queue<UndirectedGraphNode*> nodes; nodes.push(node); unordered_map<UndirectedGraphNode* , bool> visited; vector<vector<int> >results; vector<int> result; while(!nodes.empty()) { UndirectedGraphNode* curNode = nodes.front(); nodes.pop(); //如果当前结点已经访问过 if(visited.find(curNode) != visited.end()) { continue; } visited[curNode] = true; result.push_back(curNode->label); //当前结点已经访问过,因此,需要 vector<UndirectedGraphNode*> neightbours = curNode->neighbors; if(neightbours.empty()) { continue; } int size = neightbours.size(); for(int i = 0 ; i < size ; i++) { UndirectedGraphNode* nextNode = neightbours.at(i); if(!nextNode) { continue; } result.push_back(nextNode->label); //子节点必须未被访问过 if(visited.find(nextNode) != visited.end()) { continue; } nodes.push(nextNode); } results.push_back(result); result.clear(); } //转换结果 if(results.empty()) { return ""; } int size = results.size(); int len; stringstream resultStream; for(int i = 0 ; i < size ; i++) { stringstream stream; len = results.at(i).size(); for(int j = 0 ; j < len ; j++) { stream << results.at(i).at(j) << " "; } stream << "#"; resultStream << stream.str(); } return resultStream.str();}void PRint(vector<int>& result){ if(result.empty()) { cout << "no result" << endl; return; } int size = result.size(); for(int i = 0 ; i < size ; i++) { cout << result.at(i) << " " ; } cout << endl;}void process(){ vector<int> nums; Solution solution; vector<int> result; char str[1024]; while(gets(str)) { string value(str); unordered_map<int , UndirectedGraphNode*> hasBuilt; UndirectedGraphNode* root = buildGraph(value, hasBuilt); UndirectedGraphNode* newRoot = solution.cloneGraph(root); string origin = myBFS(root); cout << origin << endl; string newResult = myBFS(newRoot); cout << newResult << endl; deleteGraph(hasBuilt); deleteGraph(solution._hasBuilt); }}int main(int argc , char* argv[]){ process(); getchar(); return 0;}
新闻热点
疑难解答