首页 > 学院 > 开发设计 > 正文

BZOJ 1016 [JSOI2008] 最小生成树计数

2019-11-08 03:14:17
字体:
来源:转载
供稿:网友

Description

  现在给出了一个简单无向加权图。你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树。(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的)。由于不同的最小生成树可能很多,所以你只需要输出方案数对31011的模就可以了。

Input

  第一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数。每个节点用1~n的整数编号。接下来的m行,每行包含两个整数:a, b, c,表示节点a, b之间的边的权值为c,其中1<=c<=1,000,000,000。数据保证不会出现自回边和重边。注意:具有相同权值的边不会超过10条。

Output

  输出不同的最小生成树有多少个。你只需要输出数量对31011的模就可以了。

Sample Input

4 61 2 11 3 11 4 12 3 22 4 13 4 1

Sample Output

8

HINT

Source

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

kruskal+dfs+乘法原理~

刚开始以为是行列式啊QAQ

结果很high地写完了才发现是“最小生成树”不是“生成树”……

结果居然只要kruskal+dfs就可以了……

(据说行列式也能做,有时间可以看一下~)

好久没有写kruskal,结果忘了预处理fa[i]……复习真的很重要啊2333

具体做法是:先kruskal一下,顺便求出每种权值的边需要的条数以及同权值边的序号范围,然后dfs看每组同权值边有几种方法组成生成树,然后由于乘法原理,直接把所有种类数乘起来就是结果了~

#include<cstdio>#include<algorithm>using namespace std;#define modd 31011int n,m,sum,ans,cnt,x,y,tot,fa[101];struct node{	int x,y,val;}a[1001];struct numb{	int l,r,num;}c[1001];bool cmp(node u,node v){	return u.val<v.val;}int findd(int u){	return fa[u]==u ? u:findd(fa[u]);}void dfs(int u,int v,int k){	if(v==c[u].r+1)	{		if(k==c[u].num) sum++;return;	}	int xx=findd(a[v].x),yy=findd(a[v].y);	if(xx!=yy)	{		fa[xx]=yy;dfs(u,v+1,k+1);fa[xx]=xx;fa[yy]=yy;	}	dfs(u,v+1,k);}int main(){	scanf("%d%d",&n,&m);ans=1;	for(int i=1;i<=n;i++) fa[i]=i;	for(int i=1;i<=m;i++) scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].val);	sort(a+1,a+m+1,cmp);	for(int i=1;i<=m;i++)	{		if(a[i].val!=a[i-1].val) c[cnt].r=i-1,c[++cnt].l=i;		x=findd(a[i].x);y=findd(a[i].y);		if(x!=y) fa[x]=y,c[cnt].num++,tot++;	}	if(tot!=n-1)	{		PRintf("0/n");return 0;	}	c[cnt].r=m;	for(int i=1;i<=n;i++) fa[i]=i;	for(int i=1;i<=cnt;i++)	{		sum=0;dfs(i,c[i].l,0);		ans=(ans*sum)%modd;		for(int j=c[i].l;j<=c[i].r;j++)		  if((x=findd(a[j].x))!=(y=findd(a[j].y))) fa[x]=y;	}	printf("%d/n",ans);	return 0;}


上一篇:

下一篇:XPath教程-Axes(轴)

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表