Description
追逐影子的人,自己就是影子。 ——荷马
Allison 最近迷上了文学。她喜欢在一个慵懒的午后,细细地品上一杯卡布奇诺,静静地阅读她爱不释手的《荷马史诗》。但是由《奥德赛》和《伊利亚特》组成的鸿篇巨制《荷马史诗》实在是太长了,Allison 想通过一种编码方式使得它变得短一些。 一部《荷马史诗》中有 n 种不同的单词,从 1 到 n 进行编号。其中第 i 种单词出现的总次数为 wi。Allison 想要用 k 进制串 si 来替换第 i 种单词,使得其满足如下要求: 对于任意的 1≤i,j≤n,i≠j,都有:si 不是 sj 的前缀。 现在 Allison 想要知道,如何选择 si,才能使替换以后得到的新的《荷马史诗》长度最小。在确保总长度最小的情况下,Allison 还想知道最长的 si 的最短长度是多少? 一个字符串被称为 k 进制字符串,当且仅当它的每个字符是 0 到 k−1 之间(包括 0 和 k−1)的整数。 字符串 Str1 被称为字符串 Str2 的前缀,当且仅当:存在 1≤t≤m,使得 Str1=Str2[1..t]。其中,m 是字符串 Str2 的长度,Str2[1..t] 表示 Str2 的前 t 个字符组成的字符串。 Input
输入文件的第 1 行包含 2 个正整数 n,k,中间用单个空格隔开,表示共有 n 种单词,需要使用 k 进制字符串进行替换。
接下来 n 行,第 i+1 行包含 1 个非负整数 wi,表示第 i 种单词的出现次数。 Output
输出文件包括 2 行。
第 1 行输出 1 个整数,为《荷马史诗》经过重新编码以后的最短长度。 第 2 行输出 1 个整数,为保证最短总长度的情况下,最长字符串 si 的最短长度。 Sample Input
4 2
1
1
2
2 Sample Output
12
2 HINT
用 X(k) 表示 X 是以 k 进制表示的字符串。
一种最优方案:令 00(2) 替换第 1 种单词,01(2) 替换第 2 种单词,10(2) 替换第 3 种单词,11(2) 替换第 4 种单词。在这种方案下,编码以后的最短长度为:
1×2+1×2+2×2+2×2=12
最长字符串 si 的长度为 2。
一种非最优方案:令 000(2) 替换第 1 种单词,001(2) 替换第 2 种单词,01(2) 替换第 3 种单词,1(2) 替换第 4 种单词。在这种方案下,编码以后的最短长度为:
1×3+1×3+2×2+2×1=12
最长字符串 si 的长度为 3。与最优方案相比,文章的长度相同,但是最长字符串的长度更长一些。
对于所有数据,保证 2≤n≤100000,2≤k≤9。
当遇到k叉哈夫曼树编码时, 应该先考虑答案是否满k个 答案是否是k-1的倍数(不足补权重为0的点) 每次选权重最小的k个,编码,扔入原始集合
#include<bits/stdc++.h> using namespace std;#define For(i,n) for(int i=1;i<=n;i++)#define Fork(i,k,n) for(int i=k;i<=n;i++)#define Rep(i,n) for(int i=0;i<n;i++)#define ForD(i,n) for(int i=n;i;i--)#define RepD(i,n) for(int i=n;i>=0;i--)#define Forp(x) for(int p=PRe[x];p;p=next[p])#define Forpiter(x) for(int &p=iter[x];p;p=next[p]) #define Lson (o<<1)#define Rson ((o<<1)+1)#define MEM(a) memset(a,0,sizeof(a));#define MEMI(a) memset(a,0x3f,sizeof(a));#define MEMi(a) memset(a,128,sizeof(a));#define MEMx(a,b) memset(a,b,sizeof(a));#define INF (0x3f3f3f3f)#define F (1000000007)#define pb push_back#define mp make_pair#define fi first#define se second#define vi vector<int> #define pi pair<int,int>#define SI(a) ((a).size())#define Pr(kcase,ans) printf("Case #%d: %lld/n",kcase,ans);#define PRi(a,n) For(i,n-1) cout<<a[i]<<' '; cout<<a[n]<<endl;#define PRi2D(a,n,m) For(i,n) { / For(j,m-1) cout<<a[i][j]<<' ';/ cout<<a[i][m]<<endl; / } #pragma comment(linker, "/STACK:102400000,102400000")#define ALL(x) (x).begin(),(x).end()typedef long long ll;typedef long double ld;typedef unsigned long long ull;ll mul(ll a,ll b){return (a*b)%F;}ll add(ll a,ll b){return (a+b)%F;}ll sub(ll a,ll b){return ((a-b)%F+F)%F;}void upd(ll &a,ll b){a=(a%F+b%F)%F;}inline int read(){ int x=0,f=1; char ch=getchar(); while(!isdigit(ch)) {if (ch=='-') f=-1; ch=getchar();} while(isdigit(ch)) { x=x*10+ch-'0'; ch=getchar();} return x*f;} #define pll pair<ll,ll>priority_queue<pll ,vector<pll> ,greater<pll> > q; int main(){// freopen("bzoj4198.in","r",stdin);// freopen(".out","w",stdout); int n=read(),k=read(); For(i,n) { ll p; scanf("%lld",&p); q.push(mp(p,0)); } pll ans=mp(0,0); while (k!=2 && n%(k-1)!=1) q.push(mp(0,0)),++n; while(q.size()!=1) { pll p=mp(0,0); For(i,k) { pll now=q.top();q.pop(); p.fi+=now.fi; p.se=max(p.se,now.se+1); } ans.fi+=p.fi; ans.se=max(ans.se,p.se); q.push(p); } printf("%lld/n%lld/n",ans.fi,ans.se); return 0;}新闻热点
疑难解答