在MIMO系统使用空间分集方式时,硬件的信号与噪声畸变比SNDR(Signal to Noise-Distorsion Ratio)要求与数据速率较低的SISO系统相比,只能提高很少几个dB。另一方面,因有效数据速率按对数伴随SNDR增加,同等数据速率的SISO系统要求硬件性能按指灵敏律提高。而且,对于MIMO运用于分集状态的情况,硬件要求可以比SISO系统的低,因为分集各路的畸变一般是互不相关的。这样,在2-5GHz频段运用的线设备硬件,有可能利用集成电路片制成,使成本降低。如发信和接收两端的所有畸变都考虑到,就可能获得30dB的SUDR。有了这样大的SNDR,就可能让MIMO发送端使用64路正交调幅(QAM)。
宽带无线系统的发送端和接收端有很多发生畸变的源,最主要是来自数/模和模/数转换器(DAC/ADC)的信号混合器,它们饱和运用时将产生畸变和噪声,需要足够的电平控制加以遏止。两种转换器的钟使发送端和接收端的取样时间不均匀间隔。虽然接收端的定时跟踪环路用于对付时钟漂移,但剩余的定时相位噪声抖动将引起剩余的信号与畸变比SDR(signal to Distortion Ratio)。为了保证SDR大于30dB,定时抖动的根均方值必须小于数据速率的1%。升频和降频转换器都会引起频率漂移,从而加大相位噪声。虽有相位跟踪环路,但如相位噪声大于OFDM音调宽度的1%,则其积分必须小于-30dB,以期SDR大于30dB。
总之,所有硬件都将引起噪声,信号处理的范围应该有一定限度,以确保没有显著的畸变。对此,有必要装用功率控制和自动增益控制,使信号电平足够大于硬件噪音、但不让器件饱和。OFDM信号与其它高性能调制相比较,有稍高的峰值与均值之比PAR(peak to average ratio)而且需要特别照管。OFDM的动态范围和线性要求,可以要特别照管。OFDM的动态范围和线性要求,可以做得与单载波调制在减小PAR时的情况相仿。
也可能从两副基台天线发送两个各自编码的数据流。一个较高数据速率的信号可以是由低速率数据流多组成,每一低速数据流各自经过编码和调制,由不同的天线发送,但利用同一时间和频率槽。在接收端,三套接收天线各自接收两个数据流信号的线性组合,这两个数据流已分别由不同冲击响应所滤波。接收机将两个信号分开,利用空间均衡器,并经过解调、解码和解复接,获取原来信号。接收天线的数目一般应该多于独立发送信号的数目,以期取得较好效果。基台和用户终端各有三副接收天线,可取得接收分集的效果。利用“最大比值合并”MRC(maximal ratiocambining),将多个接收机的信号合并,得到最大信噪比SNR,可能有遏止自然干扰的好处。但是,在空间多工的情形,如有两个数据流互相干扰,或者从频率再利用的邻近地区传来干扰,MRC就不能起遏止作用。这时,利用“最小的均方误差”MMSE(minimum mean sguare error),它使每一有用信号与其估计值的均方误差最小,从而使“信号与干扰及噪声比”SINR(signal to interference plus noise ratio)最大。上述MRC和MMSE得出软信号估计,输入至软解码器。它们的适当运用可能对频率选择性通路提供3-4dB性能增益。