Study on algorithms of optimal capacitor placement and switching PRoblem in distribution network
FANG Xing 1, GUO Zhi-zhong1,2
(1、Dept. of Electrical Engineering , Harbin Institute of Technology, Harbin 150001, China;
2、Beijing Xuji Electric Co., Ltd., Beijing 100085,China )
Abstract:Capacitor optimal placement and switching plays an important role in distribution network optimization. The state of the art in optimal capacitor placement and switching problem in distribution network is reviewed. Summarizing the existing approaches to solve capacitor switching problem is particularly emphasized. The feathers and main problems of the corresponding algorithms are discussed for further research and development in this field.
Key Words: distribution network;capacitor;allocation;switching;algorithms
Teng J H在文[14,15]中分别考虑在不平衡和平衡配电系统中如何利用常用的线性规划技术实现电容器的实时优化控制。
3) 二次规划
Wang J C[16]考虑不对称配电网中电容器优化问题,建立其数学模型,把问题分解成两个子问题:电容器配置问题和实时投切问题,并用二次整数规划法求解。
4) 动态规划
Hsu Y Y等[17]提出了一种确定未来24小时馈线电容器最优投切策略的动态规划方法,其目标是在保证电压质量的同时使馈线线损最小,约束条件中包括对电容器投切次数的限制。如果把电容器的投切状态作为状态变量,当电容器较多时,动态规划会有维数灾。为克服采用动态规划可能出现的维数灾,作者将阶段n时的状态变量定义为从阶段0到n时的电容器总投切次数,此法显著降低了动态规划法在线计算的维数,加快了收敛速度,但计算量还是随电容器呈倍率增长,当电容器较多时,仍不理想,不足之处还在于将负荷当成恒电流处理。
ANN方法的最大特点是可以通过样本的训练将输入与输出之间的非线性关系存储于神经元的权值中。Santoso N I [18]用两级ANN实现电容器投切的实时控制。第一级ANN以母线的测量值(功率和电压)和电容器当前档位值为输入来预测负荷水平,第二级ANN根据负荷水平确定控制策略。Das等人针对传统优化方法费时不适合于在线应用问题,提出一种基于人工神经网络的方法;研究结果表明该方法比传统优化方法的计算速度快100倍以上[19]。
1990年,Chiang H D[20]用SA算法确定电容器的安装位置、类型、容量以及不同负荷水平下电容器的投切方案,考虑了电容器的实际情况、负荷约束以及各种负荷水平下的运行约束,并以69节点系统为例进行了计算。随后作者将电容器优化问题从三相对称系统推广到不对称系统[21],和上一篇文献不同之处还在于考虑了负荷的电压静特性以及电容器更换问题,仍然用模拟退火法求解。王守相等[22]也应用模拟退火算法解决配电电容器三相分相投切问题,算法考虑了配电系统实际的三相不平衡状况和系统日负荷变化曲线以及电容器的实际操作次数约束。
Miu K N和Chiang H D [28]研究了GA在三相不平衡配电网电容器优化配置及控制问题中的应用,构造了两级 优化模型。一级优化用遗传算法确定一个可行解空间,二级优化采用基于灵敏度分析的启发式算法,用上一级所得到的可行解空间作为搜索的初值继续寻优。该方法花费的时间比单纯使用GA要少,但解的精度有所降低。
1. Capacitor Subcommittee of the IEEE Transmission and Distribution Committee. Bibliography on Power Capacitors 1975-1980[J]. IEEE Trans. on Power Apparatus and Systems, 1983, 102(7):2331-2334.
2. IEEE VAR Management Working Group of the IEEE System Control Subcommittee. Bibliography on Reactive Power and Voltage Control[J]. IEEE Trans. on Power Systems, 1987,2(2): 361-370.
3. Bortignon G A, El-Hawary M E. Review of Capacitor Placement Techniques for Loss Reduction in Primary Feeders on Distribution Systems[C]. Canadian Conference on Electrical and Computer Engineering, 1995, 2:684-687.
4. Carlisle J C, El-Keib A A, Boyd D et al. A Review of Capacitor Placement Techniques on Distribution Feeders[C]. Proceedings of the 29th Symposium on System Theory. Tennessee. 1997: 359-365.
5. Carlisle J C, El-Keib A A, Boyd D et al. Reactive Power Compensation on Distribution Feeders[C]. Proceedings of the 29th Symposium on System Theory. Tennessee. 1997: 366-371.
6. Ng H N, Salama M M A, Chikhani A Y. Classification of Capacitor Allocation Techniques[J]. IEEE Trans. on Power Delivery, 2000, 15(1): 387-392.
7. Grainger J J, Lee S H, and EI-Kib A A. Design of a Real-Time Switching Control Scheme for Capacitive Compensation of Distribution Feeders[J]. IEEE Trans. on Power Apparatus and Systems, 1982, 101(8): 2420-2428.
8. Grainger J J, Civanlar S, and Lee S H. Optimal Design and control scheme for Continuous Capacitive Compensation of Distribution Feeders[J]. IEEE Trans. on Power Apparatus and Systems, 1983, 102(10): 3271-3278.
9. Grainger J J, Civanlar S, Clinard K N et al. Discrete-Tap Control Scheme for Capacitive Compensation of Distribution Feeders[J]. IEEE Trans. on Power Apparatus and Systems, 1984, 103(8): 2098-2107.
10. Grainger J J, Civanlar S, Clinard K N et al. Optimal Voltage Dependent Continuous Time Control of Reactive Power on Primary Distribution Feeders[J]. IEEE Trans. on Power Apparatus and Systems, 1984, 103(9): 2714-2723.
11. Civanlar S, Grainger J J. Volt/Var Control on Distribution Systems with Lateral Branches Using Shunt Capacitors and Voltage Regulators PartⅠ: the Overall Problem; PartⅡ: the Solution Problem ; Part Ⅲ: the Numerical Problem [J]. IEEE Trans on Power Apparatus and Systems. 1985, 104(11): 3278-3297.
12. 邓佑满,张伯明,相年德. 配电网络电容器实时优化投切的逐次线性整数规划法[J]. 中国电机工程学报, 1995,15(6):375-383.DENG You-man, ZHANG Bo-ming, XIANG Nian-de. A successive linear integer programming method for capacitor switching on distribution systems[J]. Proceedings of the CSEE, 1995,15(6):375-383.
13. Deng Y M, Ren X J. Optimal Capacitor Switching with Fuzzy Load Model for Radial Distribution Systems[J]. IEE Proc-Gener. Transm. Distrib., 2003,150(2): 190-194.
14. Teng J H. A Linear Model for Real-Time Capacitor Control in Unbalanced Distribution System[C]. IEEE 2000 Power Engineering Society Summer Meeting, 4: 2391-2396.
15. Teng J H, Chang C Y. A Network-Topology-Based Capacitor Control Algorithm for Distribution Systems[C]. IEEE/PES 2002 Transmission and Distribution Conference and Exhibition,2: 1158-1162
16. Wang J C, Chiang H D, Miu K N et al. Capacitor Placement and Real Time Control in Large Scale Unbalanced Distribution Systems: Loss Reduction Formula, Problem Formulation, Solution Methodology and Mathematics Justification; Numerical Studies [J]. IEEE Trans. on Power Delivery, 1997, 12(2): 953-964.
17. Hsu Y Y, Kuo H C. Dispatch of Capacitors on Distribution System Using Dynamic Programming[J]. IEE. Proceedings-C, 1993, 140(6): 433-438.
18. Santoso N I, Tan O T. Neural-Net Real Time Control of Capacitors Installed on Distribution Systems[J]. IEEE Trans. on Power Delivery, 1990,5(1): 266-272.
19. Das B, Verma P K. Artificial Neural Network-based Optimal Capacitor Switching in a Distribution System[J]. Electric Power Systems Research, 2001, 60(1): 55-62.
20. Chiang H D, Wang J C, Orville Cockings, et al. Optimal Capacitor Placement in Distribution System Part I: A New Formulation and the Overall Problem; PartⅡ: Solution Algorithms and Numerical Results [J]. IEEE Trans on Power Delivery, 1990, 5(2): 634-649.
21. Chiang H D, Wang J C, Gary Darling. Optimal Capacitor Placement, Replacement and Control in Large-Scale Unbalanced Distribution Systems: System Modeling and A New Formulation; System Solution Algorithms and Numerical Studies [J]. IEEE Trans. on Power Systems, 1995,10(1): 356-369.
22. 王守相,王成山,王剑. 配电电容器三相分相优化投切[J]. 电网技术, 2002,26(8):16-20.WANG Shou-xiang, WANG Cheng-shan, WANG Jian. Optimal capacitor switching phase by phase in distribution systems[J]. Power System Technology, 2002,26(8):16-20.
23. Kuo C C, Chang H C. Solving the Bi-objective Scheduling of Switched Capacitors Using an Interactive Best-compromise Approach[J]. Electric Power Systems Research, 1998,46(3):133-140.
24. 刘莉,陈学允,孙小平.基于遗传算法的配电网电容器优化投切[J].东北电力学院学报, 1999,19(4):33-36.LIU Li, CHEN Xue-yun, SUN Xiao-ping. Optimal capacitor switching in distribution networks with genetic method[J]. Journal Of Northeast China Institute OF Electric Power Engineering, 1999,19(4):33-36.
25. 张学松,柳焯,于尔铿. 基于Tabu方法的配电电容器投切策略[J]. 电网技术, 1998,22(2):33~36.ZHANG Xue-song, LIU Zhuo, YU Er-keng. The strategy of distribution capacitor scheme based on tabu search[J]. Power System Technology, 1998,22(2):33~36.
26. 邓集祥,张弘鹏. 用改进的Tabu搜索方法优化补偿电容器分档投切的研究[J]. 电网技术, 2000,24(2):46-49.DENG Ji-xiang, ZHANG Hong-peng. Optimization of on/off strategy of shunt capacitor based on modified tabu search method[J]. Power System Technology, 2000,24(2):46-49.
27. Hsu Y Y, Yang C C. A Hybrid Artificial Neural Network-Dynamic Programming Approach for Feeder Capacitor Scheduling [J]. IEEE Trans. on Power Systems, 1994,9(2): 1069-1075.
28. Miu K N, Chiang H D, Gary Darling. Capacitor Placement, Replacement and Control in Large Scale Distribution Systems by a GA-Based Two-Stage Algorithm[J]. IEEE Trans. on Power Systems, 1997,12(3): 1160-1166.
29. 卢鸿宇,胡林献,刘莉等. 基于遗传算法和TS算法的配电网电容器实时优化投切策略[J]. 电网技术, 2000,24(11):56-59.LU Hong-yu, HU Lin-xian, LIU Li et al. application of genetic algorithm/tabu search combination algorithm in distribution network real-time planning[J]. Power System Technology, 2000,24(11):56-59.
30. 陈星莺,钱锋,杨素琴. 模糊动态规划法在配电网无功优化控制中的应用[J]. 电网技术, 2003,27(2):68-71.CHEN Xing-ying, QIAN Feng, YANG Su-qing. Application of fuzzy dynamic programming approach to optimal reactive power control in distribution system[J]. Power System Technology, 2003,27(2):68-71.