图1指出了在3GPP结构中受MBMS影响的节点。同时也突出了新的BM-SC,它负责提供和发送移动广播服务。BM-SC服务器是一个希望使用MBMS来进行内容传送服务的入口,它建立和控制MBMS到移动核心网络的连接,同时安排和释放MBMS的传送。BM-SC也提供服务通告给终端用户。这些通告包含一个终端需要使用MBMS服务所需要的信息(例如组播服务标识符,IP组播地址,传送时间,多媒体描述等等)。BM-SC能够用于对内容提供者的信息传送产生费用记录,同时也可以治理3GPP为组播节点定义的的安全功能。 由于MBMS标准并没有定义BM-SC的功能如何实现,因此厂家可以将它们部署到不同的节点,还可以将它们集成到现有的核心和服务网络节点。 在核心网络,MBMS和BCMCS增加了创造和治理广播和组播信息分支所需要的功能和协议信息。 MBMS的一个显著特点就是能够使运营商在非常精确的地理位置上定义广播和组播服务,基本上可以精确到一个无线信元的位置,这些地理位置可以配置成MBMS服务区域。核心网络的每个节点通过下游节点的列表来决定哪里需要传送MBMS服务数据。在GGSN(GatewayGSN)层,该列表包含了SGSN(ServingGSN)数据转发方向。在SGSN层,该列表包含了WCDMA地面无线接入网络的RNC(Radio Network Controller)节点,或GSM无线接入网络,每个BSC(Base Station Controller)节点都需要接收数据。对于在组播接点展开的服务,核心网络通过追踪用户当前注册的服务来治理一个动态数据分发树,并通过IP组播的方式来转发MBMS数据给服务于注册用户的下游节点。
以下例子描述了通过移动广播来开展流媒体服务的性能。图2描述了当多个移动电视用户通过单播的方式来同时观看三个不同信道的情景。在这情况下,每个用户都需要与服务器建立一条独立的流媒体链接,服务器和网络的负载则与用户数量成正比。在这个例子中,由于有10个移动电视用户,流媒体服务器必须处理10个流媒体链接。随着用户数量的不断增加,服务器负载将不断增加,同时核心网络和无线网络的均会产生大量的数据流量。
图3描述了通过MBMS来提供移动电视服务的相同情形。服务器对每个信道只需要传送一条流媒体连接到MBMSBM-SC。在有需要的时候,在核心和无线网络的数据流只有在需要的时候才被复制。在这个例子中,流媒体服务器只需要处理三个并发流媒体链接,因此,在最末端的无线节点使用三个并发传输会话就取代了原来的六个独立单播连接。注::虽然例子是用于3GPPMBMS,它也适用於3GPP2BCMCS。 此外,MBMS和BCMCS除了支持流媒体发送之外,MBMS也支持下载。MBMS下载可以应用于有效地将文件从一个地点发送给多个接收者。MMS服务假如使用这个功能上获得很大的收益(例如提供出色体育视频短片的传送服务),而目前的MMS服务是使用点对点的技术进行发送的。将来,MMS子系统可以很方便地与BM-SC进行对接,从而使用MSMS下载来进行短片的发送。相对于MBMS而言,BMSCS并没有定义相关的协议来明确地支持文件下载服务。 通过MBMS的广播/组播器来进行文件的传送需要非凡的注重。由于MBMS的广播和组播属于单向传输技术,因此不能使用需要双向单播连接的TCP协议。然而,IETF为文件传送提出了一个叫FLUTE(FileDeliveroverUndirectional Transport)的框架,FLUTE使用了在传输层以下的UDP协议。然而,由于UDP是不可靠的,FLUTE同时使用了前向纠错(FEC)框架来防止突发性的数据包丢失。但是,即使使用了FLUTE也不能保证经常出现的无错误递送,于是MBMS也提出了一个点对点的文件修复程序,该程序会在文件进行了广播或组播后执行。在此其间,接收者可以连接到文件修复服务器并请求数据。因此,MBMS总是能够保证可靠的文件传送。 典型的MBMS工作流程 图4展现了一个典型MBMS工作流程的多层参考模型。BCMCS的解决方案也是十分相似的,但是为了简单只是用MBMS命名。 一开始,特定的MBMS服务信息被发送到提供服务的服务器,这些信息一般作为服务通告。服务通告提供服务信息和终端的访问方法。发送MBMS服务通告给终端用户的方式有很多种,最简单的方法就是是将它们储存在一个WEB服务器,通过HTTP或WAP的方式进行下载。同时也可以通过现有的机制将服务通告发送到终端,如SMS或MMS,或者通过特定的MBMS服务通告信道来进行发送。
无线网络中的广播和组播传输 伴随着MBMS和BCMCS提出,专门针对GSM,WCDMA和CDMA2000的广播和组播传输协议已经开发完成。而且,广播和组播无线传输必须同时服务于大量的用户,双向的点对点通信技术无法满足对带宽和容量要求越来越高的移动视频服务。换句话说,目前的带宽状况不适用于用户在有限带宽下所需要的服务,而新的无线传输技术将能够满足覆盖全部地区并且无论带宽状况如何的用户需求。 GSM的广播和组播无线传输 在GSM系统中,MBMS使用GPRS和EDGE模块和编码机制(CS1-4和MCS1-9)。MBMS同样也使用GPRS和EDGE的PDCH(PacketDataChannel)进行点对多点传输,RLC/MAC(RadioLink Control/Medium access Control)协议在第二层。作为对点对点传输,MBMS也支持多时槽操作。 既然这样一来,每个MBMS会话可以使用无线网络的四个时槽。 早期的模拟实验已经表明一个直接转发的MBMS传输性能是不令人满足的。因此,为了增加性能,引入了以下两个措施: 带自动重复请求(ARQ)功能的RLC/MAC--也称PDAN(PacketDownlinkAck/Nack)模式。 在这个模式中,信元的会话反馈将达到16次之多,这样,终端没有正确接收到的RCL数据块将通过MBMS无线传输进行重新广播,达到冗余的目的。 不带自动重复请求(ARQ)功能的RLC/MAC。在这个模式中,RLC数据块将会按照预先设定重传次数进行重新传送。 图5比较了不同数量的用户在盲目重传和PDAN模式下的不同。为了方便比较,假设每个基站都具有相同的C/I(Carrier-to-Interface)速率。实际上不同基站的C/I速率并不相同,因为基站的分布遍及在整个信元中。注重:这个例子采用MCS-6EDGE编码机制,假如采用GPRS编码机制的话结果结果只有一半的吞吐量。 通过防真测试表明,在用户集中的区域下进行速度为40kbps的视频广播,在PDAN模式中需要二到四个时槽的EDGE信道来编码,而盲目重传模式则需要四个时槽的EDGE信道来编码。注重:一个规则的点对点EDGE信道能够使用两个时槽进行相同速率的编码,但是只有对一个使用者。对三个使用者,别需要六个时间点。四个使用者需要八个时间点,等等。因此,假如有两个使用者在通电话,MBMS点对多点负载器就象一个规则的点对点连接一样有效率。和随着使用者的增加变得更加有效率。 MBMS终端机将会或许被建立在已有的升级的软件的EDGE硬件来支持MBMS发信号程序。 在GSM中,MBMS移动负载器能籍由GPRS/EDGE数据流程被多重发送--甚至在相同的时间点上。一个配置情节可能要刺激MBMS密集的EDGE被配置的地区。在没有EDGE的区域,MBMS能够通过点对点的GPRS被提供另外一个配置情节可能需要调整在功能性的水平中。例如,用MBMS广播开始和增加MBMS多点广播。这会在没有用户要求服务的情况下节省电池的容量。
WCDMA的广播和组播无线传输 在WCDMA中,MBMS利用现有的逻辑和物理信道来进行扩展。事实上,在WCDMA上实现只需要三个新的逻辑信道和一个新的物理信道,三个新的逻辑信道分别是:
MBMS点对多点控制信道(MCCH),包含正在进行和即将进行的相关MBMS会话的具体信息; MBMS点对多点时间信道(MSCH),提供MTCH的数据时间表信息;新闻热点
疑难解答