在这种结构中(上图),服务器实际上起到存储转发数据的作用。这一存储体系结构存在以下一些不可克服的缺点,已经不能够满足网络时代的应用需求。
NAS存储系统的特点是通过基于ip网络的网络文件协议向多种客户端提供文件级I/O服务,客户端可以在NAS存储设备提供的目录或设备中进行文件级操作。当一个用户或应用程序试图访问文件时,经过解释的I/O请求被重定向到网络传输路径。这些I/O请求经过IP网络传输到NAS服务器端,由那里的网络文件协议接收,随后解包并处理客户端和块设备的映射关系,最后将正常的I/O操作请求交给服务器上的文件系统处理。虽然与直连存储相比,NAS结构已经在速度、可靠性等方面有很大的改善,但仍然存在一些难以解决的问题。其一是传输能力有限。在NAS中,数据的传输通过现有的局域网实现,但局域网原本是用来实现消息传递的,只适合短暂的突发数据传输,不能满足大容量连续数据传输的要求;同时,网络上大量计算机之间的通信也会占用有限的网络带宽,所以当网络规模较大时,必然会导致数据传输速率减慢。其二是可扩展性有限。虽然当存储空间不足时,在网络中增加一台NAS设备非常轻易,但新的NAS设备要求有新的IP地址,无法与原有的NAS设备集成为一体,不能形成一个连续的文件系统,从而增加了存取和治理的复杂度。其三是数据备份能力有限并且不能对数据库服务提供有效的支持。通常,NAS设备不能支持存储设备之间的直接备份,只能采用基于网络的备份,这样会在数据备份时占用大量的网络带宽,严重影响网络上其他应用的运行,而且数据备份的速度也相对较慢。另一方面,由于NAS系统是面向文件的,采用的是NFS和CIFS这类网络文件访问协议,而不是块协议或数据库协议,因而使得NAS不能支持数据库服务。这一缺陷致使NAS的应用范围缩小了许多。
通过协议映射,SAN中存储设备的磁盘或磁带表现为服务器节点上的“网络磁盘”。在服务器操作系统看来,这些网络盘与本地盘一样,服务器节点就像操作本地SCSI硬盘一样对其发送SCSI命令。SCSI命令通过FCP、iSCSI、SEP等协议的封装后,由服务器发送到SAN网络,然后由存储设备接收并执行。服务器节点可以对“网络磁盘”进行各种块操作,包括FDISK、FORMAT等,也可以进行文件操作,如拷贝文件、创建目录等。与DAS、NAS相比,SAN技术的主要优点包括以下一些:其一是为每台主机提供了更多的可控存储容量。SAN并没有提高单个磁盘驱动器的容量,也没有增加主机系统中支持的主机 I/O控制器的数量,但它能显著提高连接到每台主机I/O控制器的设备数。它还提供了通过级联网络交换机和集线器来扩展容量的方法,例如,光纤仲裁环网能支持多达126台设备,而对于交换结构的光纤网络和IP网络来说,SAN具有无限寻址的能力。其二是可提供更高的传输带宽。目前光纤网络可提供2Gb/s的带宽,而千兆以太网可提供1Gb/s的带宽。此外,与共享带宽的总线和网络相比,使用交换网络的SAN为数据存取提供了更好的可扩展性,网络的传输带宽可以成倍地增长。其三是可提供更长的连接距离。SAN能以高速在很长的距离上运作,在采用光纤通道协议(Fibrc Channel PRotocol,FCP)的FC-SAN中,使用单模光纤且不使用重发器,就可支持长达10公里的数据传输;而使用IP网络进行数据传输的IP-SAN则可以在广域网上传输数据,从而使数据的存取不再受区域的限制。其四是在数据可用和共享方面的优势。服务器和数据的分离以及面向网络的集中存储使数据的安全性和可用性大大提高。而且,利用SAN的远距离连接能力,通过数据镜像等操作,即使系统遭受区域灾难(如洪水、火灾、大规模电力故障等),也能很快完成数据的灾难恢复。同时,面向网络的集中存储和多路径的数据交换使数据共享变得非常轻易。调查显示,2000年SAN在整个全球存储市场中占16%的份额,2005年将达到52%。从中国市场看,2000年SAN占8%的市场,2005年将超过42%。目前,业界几乎所有的主流存储厂商都打出了SAN的大旗,与此同时,业界也出现了SSP(存储服务供给商)的概念,它们为客户提供存储服务、托管中小企业的存储业务。数据中心服务供给商也开始提供更多存储服务。很显然,SAN将成为网络化计算与应用时代的主流存储技术。清华大学高性能计算技术研究所在承担国家“863”高科技项目中,研制开发出SAN结构的 MStor系列存储网络系统。该系统性能优越且成本低廉,可分别支持FCP、iSCSI协议,具有存储治理、存储虚拟化、数据容灾等完整的系统组件,是国内首家拥有完全自主知识产权的SAN产品,已应用于油田、教育等行业。 未来趋势在未来,网络存储将在以下几个方面得到发展。1.基于InfiniBand的存储系统InfiniBand 是被用来取代PCI总线的新I/O体系结构。InfiniBand 把网络技术引入I/O体系中,形成一个I/O交换网络结构,主机系统通过一个或多个主机通道适配器(HCA)连接到I/O交换网上,存储器、网络通信设备通过目标通道适配器(TCA)连接到该I/O交换网上。InfiniBand体系结构把IP网络和存储网络合二为一,以交换机互连和路由器互连的方式支持系统的可扩展性。服务器端通过主机通道适配器(HCA)连接到主机内存总线上,突破了PCI的带宽限制,存储设备端通过终端通道适配器(TCA)连接到物理设备上,突破了SCSI和FC-AL的带宽限制。在InfiniBand体系结构下,可以实现不同形式的存储系统,包括SAN和NAS。基于InfiniBand I/O路径的SAN存储系统有两种实现途径:其一是SAN存储设备内部通过InfiniBand I/O路径进行数据通信,InfiniBand I/O路径取代PCI或高速串性总线,但与服务器/主机系统的连接还是通过FC I/O路径;其二是SAN存储设备和主机系统利用InfiniBand I/O路径取代FC I/O路径,实现彻底地基于InfiniBand I/O路径的存储体系结构。 新闻热点
疑难解答