Given a string S and a string T, count the number of distinct subsequences of T in S.
A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, “ACE” is a subsequence of “ABCDE” while “AEC” is not).
Here is an example: S = “rabbbit”, T = “rabbit”
Return 3.
找到T在S中有几种子序列表示,如: S = “rabbbit”, T = “rabbit”
[ rabb b it rab b bit ra b bbit ] 三种
动规解决,找到转移方程: if (s[i] == t[j]) { dp[i][j] = dp[i-1][j-1] + dp[i-1][j]; } else { dp[i][j] = dp[i-1][j]; }
dp[i-1][j-1] 表示s[0:i-1]已经有这么多个t[0:j-1]的子序列。 dp[i-1][j] 表示s[0:i-1]已经有这么多个t[0:j]的子序列。 如果s[i] == t[j], 可以在dp[i-1][j]数量的基础上新增dp[i-1][j-1]个子序列。
新闻热点
疑难解答