Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target.
Note: The solution set must not contain duplicate quadruplets.
For example, given array S = [1, 0, -1, 0, -2, 2], and target = 0.A solution set is:[ [-1, 0, 0, 1], [-2, -1, 1, 2], [-2, 0, 0, 2]]这道题跟3SUM类似,多加一层循环即可。先对数组进行排序,前两个数用循环,后两个数用two point从两边向中间逼近,同时注意跳过重复的情况。代码如下:public class Solution { public List<List<Integer>> fourSum(int[] nums, int target) { Arrays.sort(nums); List<List<Integer>> res = new ArrayList<List<Integer>>(); for (int i = 0; i < nums.length - 3; i ++) { if (i == 0 || nums[i] != nums[i - 1]) { for (int j = i + 1; j < nums.length - 2; j ++) { if (j == i + 1 || nums[j] != nums[j - 1]) { int left = j + 1, right = nums.length - 1, sum = target - nums[i] - nums[j]; while (left < right) { if (nums[left] + nums[right] == sum) { List<Integer> tempList = new ArrayList<Integer>(); tempList.add(nums[i]); tempList.add(nums[j]); tempList.add(nums[left]); tempList.add(nums[right]); res.add(tempList); left ++; right --; while (left < right && nums[left] == nums[left - 1]) left ++; while (left < right && nums[right] == nums[right + 1]) right --; } else if (nums[left] + nums[right] < sum) { left ++; } else { right --; } } } } } } return res; }}另外,beat 100%的方法踢掉了很多不需要的部分,可以借鉴他的限制条件,代码如下:public List<List<Integer>> fourSum(int[] nums, int target) { ArrayList<List<Integer>> res = new ArrayList<List<Integer>>(); int len = nums.length; if (nums == null || len < 4) return res; Arrays.sort(nums); int max = nums[len - 1]; if (4 * nums[0] > target || 4 * max < target) return res; int i, z; for (i = 0; i < len; i++) { z = nums[i]; if (i > 0 && z == nums[i - 1])// avoid duplicate continue; if (z + 3 * max < target) // z is too small continue; if (4 * z > target) // z is too large break; if (4 * z == target) { // z is the boundary if (i + 3 < len && nums[i + 3] == z) res.add(Arrays.asList(z, z, z, z)); break; } threeSumForFourSum(nums, target - z, i + 1, len - 1, res, z); } return res; } /* * Find all possible distinguished three numbers adding up to the target * in sorted array nums[] between indices low and high. If there are, * add all of them into the ArrayList fourSumList, using * fourSumList.add(Arrays.asList(z1, the three numbers)) */ public void threeSumForFourSum(int[] nums, int target, int low, int high, ArrayList<List<Integer>> fourSumList, int z1) { if (low + 1 >= high) return; int max = nums[high]; if (3 * nums[low] > target || 3 * max < target) return; int i, z; for (i = low; i < high - 1; i++) { z = nums[i]; if (i > low && z == nums[i - 1]) // avoid duplicate continue; if (z + 2 * max < target) // z is too small continue; if (3 * z > target) // z is too large break; if (3 * z == target) { // z is the boundary if (i + 1 < high && nums[i + 2] == z) fourSumList.add(Arrays.asList(z1, z, z, z)); break; } twoSumForFourSum(nums, target - z, i + 1, high, fourSumList, z1, z); } } /* * Find all possible distinguished two numbers adding up to the target * in sorted array nums[] between indices low and high. If there are, * add all of them into the ArrayList fourSumList, using * fourSumList.add(Arrays.asList(z1, z2, the two numbers)) */ public void twoSumForFourSum(int[] nums, int target, int low, int high, ArrayList<List<Integer>> fourSumList, int z1, int z2) { if (low >= high) return; if (2 * nums[low] > target || 2 * nums[high] < target) return; int i = low, j = high, sum, x; while (i < j) { sum = nums[i] + nums[j]; if (sum == target) { fourSumList.add(Arrays.asList(z1, z2, nums[i], nums[j])); x = nums[i]; while (++i < j && x == nums[i]) // avoid duplicate ; x = nums[j]; while (i < --j && x == nums[j]) // avoid duplicate ; } if (sum < target) i++; if (sum > target) j--; } return; }}
新闻热点
疑难解答