由上一篇二叉树详解中,我们知道根据前序中序或中序后序,可以还原二叉树,这里主要说二叉树的三种遍历方式
public class TreeNode { int val; TreeNode left; TreeNode right; TreeNode(int x) { val = x; } }还原二叉树
public TreeNode reConstructBinaryTree(int[] PRe, int[] in) { if (pre == null || in == null) { return null; } HashMap<Integer, Integer> hashMap = new HashMap<Integer, Integer>(); for (int i = 0; i < in.length; i++) { hashMap.put(in[i], i); } return preIn(pre, 0, pre.length - 1, in, 0, in.length - 1, hashMap); } // 根据前序和中序还原二叉树 public TreeNode preIn(int[] p, int pi, int pj, int[] n, int ni, int nj, HashMap<Integer, Integer> map) { if (pi > pj) { return null; } TreeNode head = new TreeNode(p[pi]); int index = map.get(p[pi]); // 根据前序遍历知道根节点,根据中序遍历知道根左边的为左子树,右边的为右子树 head.left = preIn(p, pi + 1, pi + index - ni, n, ni, index - 1, map); head.right = preIn(p, pi + index - ni + 1, pj, n, index + 1, nj, map); System.out .println("head =" + (head != null ? head.val : " ") + " head.left =" + (head.left != null ? head.left.val : " ") + " head.right =" + (head.right != null ? head.right.val : " ")); return head; }2、前序遍历
// 根左右 public void preorderTraversa(TreeNode node) { if (node == null) { return; } System.out.print(node.val + " "); preorderTraversa(node.left); preorderTraversa(node.right); }3、中序遍历
// 左根右 public void inorderTraversa(TreeNode node) { if (node == null) { return; } inorderTraversa(node.left); System.out.print(node.val + " "); inorderTraversa(node.right); }4、后序遍历
// 左右根 public void postorderTraversa(TreeNode node) { if (node == null) { return; } postorderTraversa(node.left); postorderTraversa(node.right); System.out.print(node.val + " "); }5、具体调用代码如下
import java.util.HashMap;public class BinaryTree { public static void main(String[] args) { int pre[] = { 1, 2, 4, 7, 3, 5, 6, 8 }; int in[] = { 4, 7, 2, 1, 5, 3, 8, 6 }; BinaryTree binaryTree = new BinaryTree(); // 利用前序和中序,创建二叉树 TreeNode treeNode = binaryTree.reConstructBinaryTree(pre, in); // 前序遍历二叉树 binaryTree.preorderTraversa(treeNode); System.out.println(); // 中序遍历 binaryTree.inorderTraversa(treeNode); System.out.println(); // 后序遍历 binaryTree.postorderTraversa(treeNode); } // 左右根 public void postorderTraversa(TreeNode node) { if (node == null) { return; } postorderTraversa(node.left); postorderTraversa(node.right); System.out.print(node.val + " "); } // 根左右 public void preorderTraversa(TreeNode node) { if (node == null) { return; } System.out.print(node.val + " "); preorderTraversa(node.left); preorderTraversa(node.right); } // 左根右 public void inorderTraversa(TreeNode node) { if (node == null) { return; } inorderTraversa(node.left); System.out.print(node.val + " "); inorderTraversa(node.right); } public TreeNode reConstructBinaryTree(int[] pre, int[] in) { if (pre == null || in == null) { return null; } HashMap<Integer, Integer> hashMap = new HashMap<Integer, Integer>(); for (int i = 0; i < in.length; i++) { hashMap.put(in[i], i); } return preIn(pre, 0, pre.length - 1, in, 0, in.length - 1, hashMap); } // 根据前序和中序还原二叉树 public TreeNode preIn(int[] p, int pi, int pj, int[] n, int ni, int nj, HashMap<Integer, Integer> map) { if (pi > pj) { return null; } TreeNode head = new TreeNode(p[pi]); int index = map.get(p[pi]); // 根据前序遍历知道根节点,根据中序遍历知道根左边的为左子树,右边的为右子树 head.left = preIn(p, pi + 1, pi + index - ni, n, ni, index - 1, map); head.right = preIn(p, pi + index - ni + 1, pj, n, index + 1, nj, map); System.out .println("head =" + (head != null ? head.val : " ") + " head.left =" + (head.left != null ? head.left.val : " ") + " head.right =" + (head.right != null ? head.right.val : " ")); return head; }}
新闻热点
疑难解答