首页 > 学院 > 开发设计 > 正文

UOJ#34 多项式乘法(FFT模板题)

2019-11-08 00:42:26
字体:
来源:转载
供稿:网友

题目描述

给你两个多项式,请输出乘起来后的多项式。

输入格式

第一行两个整数 nn 和 mm,分别表示两个多项式的次数。

第二行 n+1n+1 个整数,分别表示第一个多项式的 00 到 nn 次项前的系数。

第三行 m+1m+1 个整数,分别表示第一个多项式的 00 到 mm 次项前的系数。

输出格式

一行 n+m+1n+m+1 个整数,分别表示乘起来后的多项式的 00 到 n+mn+m 次项前的系数。

样例一

input

1 21 21 2 1

output

1 4 5 2

explanation

(1+2x)⋅(1+2x+x2)=1+4x+5x2+2x3。

限制与约定

0≤n,m≤105,保证输入中的系数大于等于 0 且小于等于 9

时间限制:1s

空间限制:256MB

题解:FFT模板

递归版本

#include<iostream>#include<cstdio>#include<algorithm>#include<cmath>#include<cstring>#define N 2300003#define pi acos(-1)using namespace std;struct data{	double x,y; 	data (double X=0,double Y=0) {		x=X,y=Y;	}}a[N],b[N],c[N];data Operator +(data a,data b){  return data(a.x+b.x,a.y+b.y); }data operator -(data a,data b){  return data(a.x-b.x,a.y-b.y); }data operator *(data a,data b){  return data(a.x*b.x-a.y*b.y,a.y*b.x+b.y*a.x); }int n,m;char s[N];void fft(data x[N],int n,int opt)//求解出的是系数向量的离散傅里叶变换,y=(y0,y1,...,yn-1) ,其中yk=A(wn^k)=sigma(j=0..n-1)aj*wn^kj {	if (n==1) return;//一个元素DFT就是他本身,y0=a0*W1^0=a0*1=a0 	data l[n>>1],r[n>>1];	for (int i=0;i<n;i+=2)	 l[i>>1]=x[i],r[i>>1]=x[i+1];//A[0](x)=a0+a2*x+a4*x^2+..+an-2*x^(n/2-1)	 //A[1](x)=a1+a3*x+a5*x^2+..+an-1*x^(n/2-1)	 //A(x)=A[0](x^2)+x*A[1](x^2)	 //所以求A(x)在wn^0,wn^1,....,wn^(n-1)处值的问题就转换成了求次数界n/2的多项式A[0](x),A[1](x)在点(wn^0)^2,(wn^1)^2,...,(wn^(n-1))^2的取值	 //对于y0,y1,..,yn/2-1,yk=yk[0]+wn^k*yk[1]=A[0](wn^2k)+wn^k*A[1](wn^2k),根据消去引理wn^2k=w(n/2)^k ,yk=A(wn^k)	 //对于yn/2,yn/2+1,..yn-1, yk+n/2=yk[0]-wn^k*yk[1]  wn^(k+n/2)=wn^k*wn^(n/2)其中wn^(n/2)=w2=-1 	 //yk+n/2=yk[0]-wn^k*yk[1]=yk[0]-wn^(k+n/2)*yk[1]=A[0](wn^2k)+wn^(k+n/2)*A[1](wn^2k) 	 //根据wn^(2k+n)=wn^2k ,得 yk+n/2= A[0](wn^(2k+n))+wn^(k+n/2)*A[1](wn^(2k+n))=A(wn^(k+n/2))	fft(l,n>>1,opt); fft(r,n>>1,opt);	data wn=data(cos(2*pi/n),sin(opt*2*pi/n));//主n次单位根,其他n次单位复数根都是wn的幂次 	//如果opt==-1,那么我们实际是求的是逆DFT,把a与y互换,用wn^(-1)替换wn 	data w=data(1,0),t;//wn^0=1 	for (int i=0;i<n>>1;i++,w=w*wn)	 t=w*r[i],x[i]=l[i]+t,x[i+(n>>1)]=l[i]-t;}int main(){	freopen("a.in","r",stdin);	scanf("%d%d",&n,&m);	for (int i=0;i<=n;i++) scanf("%lf",&a[i].x);	for (int i=0;i<=m;i++) scanf("%lf",&b[i].x);	m=n+m; //相乘后次数界变成两个多项式次数界的和 	for (n=1;n<=m;n<<=1);	fft(a,n,1); fft(b,n,1);	for (int i=0;i<=n;i++) c[i]=a[i]*b[i];//这里得到的是点值表达 	fft(c,n,-1);//aj=1/n*sigma(k=0..n-1)yk*wn^(-kj) 	for (int i=0;i<=m;i++) PRintf("%d ",(int)(c[i].x/n+0.5));	printf("/n");}非递归版本

#include<iostream>#include<cstdio>#include<cstring>#include<algorithm>#include<cmath>#define N 2300003#define pi acos(-1)using namespace std;struct data{	double x,y; 	data (double X=0,double Y=0) {		x=X,y=Y;	}}a[N],b[N],c[N];data operator +(data a,data b){  return data(a.x+b.x,a.y+b.y); }data operator -(data a,data b){  return data(a.x-b.x,a.y-b.y); }data operator *(data a,data b){  return data(a.x*b.x-a.y*b.y,a.y*b.x+b.y*a.x); }int n,m,L,R[N];char s[N];void fft(data a[N],int opt){	for (int i=0;i<n;i++) 	 if (i<R[i]) swap(a[i],a[R[i]]);	for(int i=1;i<n;i<<=1){		data wn=data(cos(pi/i),opt*sin(pi/i));		for (int p=i<<1,j=0;j<n;j+=p) {			data w=data(1,0);			for (int k=0;k<i;k++,w=w*wn){				data x=a[j+k],y=w*a[j+k+i];				a[j+k]=x+y; a[j+k+i]=x-y;			}		}	}}int main(){	freopen("a.in","r",stdin);	scanf("%d%d",&n,&m);	for (int i=0;i<=n;i++) scanf("%lf",&a[i].x);	for (int i=0;i<=m;i++) scanf("%lf",&b[i].x);	m=n+m;	for (n=1;n<=m;n<<=1) L++;    for (int i=0;i<n;i++)	 R[i]=(R[i>>1]>>1)|((i&1)<<(L-1));//位逆序置换 	fft(a,1); fft(b,1);	for (int i=0;i<=n;i++) a[i]=a[i]*b[i];	fft(a,-1);	for (int i=0;i<=m;i++)	 printf("%d ",(int)(a[i].x/n+0.5));	printf("/n");} 


发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表