首页 > 系统 > Android > 正文

android sdcard存储方案一(基于fuse文件系统)

2019-11-09 15:26:07
字体:
来源:转载
供稿:网友

一、 启动三个相关service

转载地址:http://blog.csdn.net/fybon/article/details/25904215

按启动顺序,如下:

service vold /system/bin/vold    class core    socket vold stream 0660 root mount

service installd /system/bin/installd    class main    socket installd stream 600 system system

service sdcard /system/bin/sdcard -u 1023 -g 1023 -l /data/media /mnt/shell/emulated    class late_start

上面三个service启动后,内置sdcard状态如下图:

注:

android_filesystem_config.h

#define AID_MEDIA_RW      1023  /* internal media storage write access */

#define AID_SDCARD_RW     1015  /* external storage write access */

#define AID_SDCARD_R      1028  /* external storage read access */

二、insalld service

frameworks/native/cmds/installd/installd.c installd 启动时将/data/media 目录创建好,并将预置资源迁移到/data/media/0目录

int initialize_directories() {    int res = -1;    // Read current filesystem layout version to handle upgrade paths    char version_path[PATH_MAX];    snPRintf(version_path, PATH_MAX, "%s.layout_version", android_data_dir.path);    int oldVersion;    if (fs_read_atomic_int(version_path, &oldVersion) == -1) {        oldVersion = 0;    }    int version = oldVersion;    if (version == 0) {        // Introducing multi-user, so migrate /data/media contents into /data/media/0        ALOGD("Upgrading /data/media for multi-user");        // Ensure /data/media        if (fs_prepare_dir(android_media_dir.path, 0770, AID_MEDIA_RW, AID_MEDIA_RW) == -1) {            goto fail;        }        // /data/media.tmp        char media_tmp_dir[PATH_MAX];        snprintf(media_tmp_dir, PATH_MAX, "%smedia.tmp", android_data_dir.path);        // Only copy when upgrade not already in progress        if (access(media_tmp_dir, F_OK) == -1) {            if (rename(android_media_dir.path, media_tmp_dir) == -1) {                ALOGE("Failed to move legacy media path: %s", strerror(errno));                goto fail;            }        }        // Create /data/media again        if (fs_prepare_dir(android_media_dir.path, 0770, AID_MEDIA_RW, AID_MEDIA_RW) == -1) {            goto fail;        }        // /data/media/0        char owner_media_dir[PATH_MAX];        snprintf(owner_media_dir, PATH_MAX, "%s0", android_media_dir.path);        // Move any owner data into place        if (access(media_tmp_dir, F_OK) == 0) {            if (rename(media_tmp_dir, owner_media_dir) == -1) {                ALOGE("Failed to move owner media path: %s", strerror(errno));                goto fail;            }        }

  。。。。。。

 }

三、sdcard service

1、初始化fuse

static void fuse_init(struct fuse *fuse, int fd, const char *source_path,

        gid_t write_gid, derive_t derive, bool split_perms) {

 //此函数初始化重要的全局数据结构fuse,供后面创建的多线程使用

    这个全局结构体变量在run()函数中定义,因为run()函数永不退出,所以虽然fuse是函数内的局部变量,但它的内存其实永不释放。达相当于全局变量的效果啦。

/*********=============================================

提前将run函数注释说明fuse数据结构相关代码:

static int run(const char* source_path, const char* dest_path, uid_t uid,        gid_t gid, gid_t write_gid, int num_threads, derive_t derive,        bool split_perms) {    int fd;    char opts[256];    int res;    struct fuse fuse;    /* cleanup from previous instance, if necessary */    umount2(dest_path, 2);

    ...................

        res = ignite_fuse(&fuse, num_threads);    /* we do not attempt to umount the file system here because we are no longer     * running as the root user */

*********================================================/

    pthread_mutex_init(&fuse->lock, NULL);        //初始化多线程互斥量       fuse->fd = fd;     // dev/fuse 作为user space /kernel space 交互的设备节点    fuse->next_generation = 0;

 // 系统启动时带-d / -l 或者不速这两个参数,会对 fuse->derive赋不同的值:  service sdcard /system/bin/sdcard -u 1023 -g 1023-l /data/media /mnt/shell/emulated

typedef enum {    DERIVE_NONE,    DERIVE_LEGACY,    DERIVE_UNIFIED,} derive_t;  

 // -l :derive初始化为DERIVE_LEGACY , -d :derive初始化为DERIVE_UNIFIED ,无这两参数:derive初始化为DERIVE_NONE/

// derive 初始化这几值有什么不同呢????    fuse->derive = derive;                      fuse->split_perms = split_perms;    fuse->write_gid = write_gid;        //w     memset(&fuse->root, 0, sizeof(fuse->root));    fuse->root.nid = FUSE_ROOT_ID; /* 1 */       fuse->root.refcount = 2;    fuse->root.namelen = strlen(source_path);    fuse->root.name = strdup(source_path);        //这里记录根目录路径为:/data/media ,后面操作/mnt/shell/emulated会转换到/data/media    fuse->root.userid = 0;    fuse->root.uid = AID_ROOT;    /* Set up root node for various modes of Operation */    switch (derive) {        。。。。。。。。。。。。//derive 初始化为DERIVE_LEGACY    case DERIVE_LEGACY:        /* Legacy behavior used to support internal multiuser layout which         * places user_id at the top directory level, with the actual roots         * just below that. Shared OBB path is also at top level. */        fuse->root.perm = PERM_LEGACY_PRE_ROOT;                 //初始化根目录node,sdcard.c也类似kernel fs为每个目录和文件维护了一个node结构体        fuse->root.mode = 0771;        fuse->root.gid = AID_SDCARD_R;        fuse->package_to_appid = hashmapCreate(256, str_hash, str_icase_equals);        fuse->appid_with_rw = hashmapCreate(128, int_hash, int_equals);        snprintf(fuse->obbpath, sizeof(fuse->obbpath), "%s/obb", source_path);        fs_prepare_dir(fuse->obbpath, 0775, getuid(), getgid());        break;    }

//容量控制#ifdef LIMIT_SDCARD_SIZE    struct statfs stat;    if (statfs(fuse->root.name, &stat) < 0) {        ERROR("get %s fs status fail /n",fuse->root.name);fuse->free_size =0;    }else{fuse->free_size = stat.f_bfree*stat.f_bsize;LOG("[fuse_debug]fuse.free_size =%lld /n",fuse->free_size);    }#endif}

两个重要数据结构:fuse和node

/* Global data structure shared by all fuse handlers. */struct fuse {    pthread_mutex_t lock;    __u64 next_generation;    int fd;    derive_t derive;    bool split_perms;    gid_t write_gid;    struct node root;    char obbpath[PATH_MAX];    Hashmap* package_to_appid;           //hash map    Hashmap* appid_with_rw;#ifdef LIMIT_SDCARD_SIZE__u64 free_size; //add by mtk for limit internal sdcard size#endif};

struct node {    __u32 refcount;    __u64 nid;                 // node id    __u64 gen;    /* State derived based on current position in hierarchy. */    perm_t perm;    userid_t userid;    uid_t uid;    gid_t gid;    mode_t mode;    struct node *next;          /* per-dir sibling list */    struct node *child;         /* first contained file by this dir */    struct node *parent;        /* containing directory */    size_t namelen;    char *name;    /* If non-null, this is the real name of the file in the underlying storage.     * This may differ from the field "name" only by case.     * strlen(actual_name) will always equal strlen(name), so it is safe to use     * namelen for both fields.     */    char *actual_name;    /* If non-null, an exact underlying path that should be grafted into this     * position. Used to support things like OBB. */    char* graft_path;    size_t graft_pathlen;};

2、启动fuse

static int run(const char* source_path, const char* dest_path, uid_t uid,        gid_t gid, gid_t write_gid, int num_threads, derive_t derive,        bool split_perms) {    int fd;    char opts[256];    int res;    struct fuse fuse;   //这个局部变量,却起到全局变量的效果。    /* cleanup from previous instance, if necessary */    umount2(dest_path, 2);     //先做一次强制umount动作    fd = open("/dev/fuse", O_RDWR);  //打开/dev/fuse字符型设备,这个fd将要传递到kernel fuse    if (fd < 0){        ERROR("cannot open fuse device: %s/n", strerror(errno));        return -1;    }    snprintf(opts, sizeof(opts),            "fd=%i,rootmode=40000,default_permissions,allow_other,user_id=%d,group_id=%d",            fd, uid, gid);    res = mount("/dev/fuse", dest_path, "fuse", MS_NOSUID | MS_NODEV, opts);      //将 /mnt/shell/emulated 挂载到/dev/fuse设备    if (res < 0) {        ERROR("cannot mount fuse filesystem: %s/n", strerror(errno));        goto error;    }    //将sdcard的权限由root降为media_rw    res = setgid(gid);    if (res < 0) {        ERROR("cannot setgid: %s/n", strerror(errno));        goto error;    }    res = setuid(uid);    if (res < 0) {        ERROR("cannot setuid: %s/n", strerror(errno));        goto error;    }    // /初始化重要的fuse数据结构  ,    fuse_init(&fuse, fd, source_path, write_gid, derive, split_perms);    umask(0);   //创建 hander thread, 启动fuse    res = ignite_fuse(&fuse, num_threads);          /* we do not attempt to umount the file system here because we are no longer     * running as the root user */error:    close(fd);    return res;}下面再看handler thread 创建,及启动。关于pthread请看我转的一篇blog,写得非常好。

static int ignite_fuse(struct fuse* fuse, int num_threads){    struct fuse_handler* handlers;    int i;    handlers = malloc(num_threads * sizeof(struct fuse_handler));    if (!handlers) {        ERROR("cannot allocate storage for threads/n");        return -ENOMEM;    }    for (i = 0; i < num_threads; i++) {        // 默认num_threads==2  // #define DEFAULT_NUM_THREADS 2        handlers[i].fuse = fuse;        handlers[i].token = i;                         // 以线程号作为 token,标识handler 。     }    /* When deriving permissions, this thread is used to process inotify events,     * otherwise it becomes one of the FUSE handlers. */    i = (fuse->derive == DERIVE_NONE) ? 1 : 0;    for (; i < num_threads; i++) {        ERROR("to start thread #%d /n", i);        pthread_t thread;

      //service sdcard /system/bin/sdcard -u 1023 -g 1023-l /data/media /mnt/shell/emulated  

      // 启动sdcard service时带 -d / -l 参数, derive 为DERIVE_LEGACY或DERIVE_UNIFIED时。

  //为什么要两个线程?这两个线程要怎么同步吗?

        int res = pthread_create(&thread, NULL, start_handler, &handlers[i]);        if (res) {            ERROR("failed to start thread #%d, error=%d/n", i, res);            goto quit;        }    }    ERROR("fuse->derive #%d /n", fuse->derive);    if (fuse->derive == DERIVE_NONE) {             handle_fuse_requests(&handlers[0]);       //derive 为DERIVE_NONE,主进程处理handlers[0]     } else {        watch_package_list(fuse);    // 主进程watch文件:"/data/system/packages.list" 的delete通知事件! 

                                     // 可是watch到delete事件后,并没有做什么?可以Android后续版本会有什么改进!!??    }    ERROR("terminated prematurely/n");    /* don't bother killing all of the other threads or freeing anything,     * should never get here anyhow */quit:    exit(1);}

接上个的函数

static void handle_fuse_requests(struct fuse_handler* handler){    struct fuse* fuse = handler->fuse;    for (;;) {        ssize_t len = read(fuse->fd,       //从字符型设备/dev/fuse中读取kernel fuse文件系统发送出来的处理请求包                handler->request_buffer, sizeof(handler->request_buffer));     。。。。。。。        const struct fuse_in_header *hdr = (void*)handler->request_buffer;        //请求包中解析出fuse request header        if (hdr->len != (size_t)len) {            ERROR("[%d] malformed header: len=%zu, hdr->len=%u/n",                    handler->token, (size_t)len, hdr->len);            continue;        }        const void *data = handler->request_buffer + sizeof(struct fuse_in_header);        size_t data_len = len - sizeof(struct fuse_in_header);        __u64 unique = hdr->unique;        int res = handle_fuse_request(fuse, handler, hdr, data, data_len);         //处理kernel fuse requst请求包        /* We do not access the request again after this point because the underlying         * buffer storage may have been reused while processing the request. */        if (res != NO_STATUS) {            if (res) {                TRACE("[%d] ERROR %d/n", handler->token, res);            }            fuse_status(fuse, unique, res);                 //返回fuse request请求的处理结果。        }    }}

3、fuse请求包处理

先看几个相关的宏定义,及重要的结构体:struct fuse_handler /* Maximum number of bytes to write in one request. */#define MAX_WRITE (256 * 1024)/* Maximum number of bytes to read in one request. */#define MAX_READ (128 * 1024)/* Largest possible request. * The request size is bounded by the maximum size of a FUSE_WRITE request because it has * the largest possible data payload. */#define MAX_REQUEST_SIZE (sizeof(struct fuse_in_header) + sizeof(struct fuse_write_in) + MAX_WRITE)/* Private data used by a single fuse handler. */struct fuse_handler {    struct fuse* fuse;                //指向上面重点介绍过的全局变量fuse     int token;                             // 以线程号作为 token,标识handler     /* To save memory, we never use the contents of the request buffer and the read     * buffer at the same time.  This allows us to share the underlying storage. */    union {        __u8 request_buffer[MAX_REQUEST_SIZE];    // 从这个数组大小的宏定义MAX_REQUEST_SIZE,可以看出它有两个作用:  //1、保存从字符型设备/dev/fuse中读取kernel fuse文件系统发送出来的处理请求包。  //2、保存从内核fuse write请求copy而来的需要通过ext4写入到存储设备的数据。        __u8 read_buffer[MAX_READ];   //保存通过ext4从存储读取到的,需要通过内核fuse read请求,传上userspace app 的数据。    };};sdcard service 与 kernel 文件系统的交互请求:enum fuse_opcode {FUSE_LOOKUP     = 1,FUSE_FORGET     = 2,  /* no reply */FUSE_GETATTR     = 3,FUSE_SETATTR     = 4,FUSE_READLINK     = 5,FUSE_SYMLINK     = 6,FUSE_MKNOD     = 8,FUSE_MKDIR     = 9,FUSE_UNLINK     = 10,FUSE_RMDIR     = 11,FUSE_RENAME     = 12,FUSE_LINK     = 13,FUSE_OPEN     = 14,FUSE_READ     = 15,FUSE_WRITE     = 16,FUSE_STATFS     = 17,FUSE_RELEASE       = 18,FUSE_FSYNC         = 20,FUSE_SETXATTR      = 21,FUSE_GETXATTR      = 22,FUSE_LISTXATTR     = 23,FUSE_REMOVEXATTR   = 24,FUSE_FLUSH         = 25,FUSE_INIT          = 26,FUSE_OPENDIR       = 27,FUSE_READDIR       = 28,FUSE_RELEASEDIR    = 29,FUSE_FSYNCDIR      = 30,FUSE_GETLK         = 31,FUSE_SETLK         = 32,FUSE_SETLKW        = 33,FUSE_ACCESS        = 34,FUSE_CREATE        = 35,FUSE_INTERRUPT     = 36,FUSE_BMAP          = 37,FUSE_DESTROY       = 38,FUSE_IOCTL         = 39,FUSE_POLL          = 40,/* CUSE specific operations */CUSE_INIT          = 4096,};好了,了解上面这些后,看下面两fuse请求包处理函数就很容易了!static void handle_fuse_requests(struct fuse_handler* handler){    struct fuse* fuse = handler->fuse;    for (;;) {        ssize_t len = read(fuse->fd,       //从字符型设备/dev/fuse中读取kernel fuse文件系统发送出来的处理请求包,                handler->request_buffer, sizeof(handler->request_buffer));    //如果是write请求命令,此时包里还有要写的数据。  。。。。。。。        const struct fuse_in_header *hdr = (void*)handler->request_buffer;        //请求包中解析出fuse request header        if (hdr->len != (size_t)len) {            ERROR("[%d] malformed header: len=%zu, hdr->len=%u/n",                    handler->token, (size_t)len, hdr->len);            continue;        }        const void *data = handler->request_buffer + sizeof(struct fuse_in_header);        size_t data_len = len - sizeof(struct fuse_in_header);        __u64 unique = hdr->unique;        int res = handle_fuse_request(fuse, handler, hdr, data, data_len);         //处理kernel fuse requst请求包        /* We do not access the request again after this point because the underlying         * buffer storage may have been reused while processing the request. */        if (res != NO_STATUS) {            if (res) {                TRACE("[%d] ERROR %d/n", handler->token, res);            }            fuse_status(fuse, unique, res);                 //返回fuse request请求的处理结果。        }    }}static int handle_fuse_request(struct fuse *fuse, struct fuse_handler* handler,        const struct fuse_in_header *hdr, const void *data, size_t data_len){    switch (hdr->opcode) {    。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。    case FUSE_OPEN: { /* open_in -> open_out */                              //打开要操作的文件, 记录文件描述符fd        const struct fuse_open_in *req = data;        return handle_open(fuse, handler, hdr, req);                         }    //  READ / WRITE 操作都涉及到sdcard usrspace 与kernel fuse kernel spcace之间的读、写数据的内存copy交互。    case FUSE_READ: { /* read_in -> byte[] */        const struct fuse_read_in *req = data;        return handle_read(fuse, handler, hdr, req);                             }    case FUSE_WRITE: { /* write_in, byte[write_in.size] -> write_out */        const struct fuse_write_in *req = data;        const void* buffer = (const __u8*)data + sizeof(*req);        return handle_write(fuse, handler, hdr, req, buffer);    } 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。        }}

4、derive permission授权

前面提到sdcard.c也类似kernel fs为每个目录和文件维护了一个node结构体,下面围绕这个node来看整个权限控限过程就很明白了。首先看看几个跟权限相关的enum :定义的文件几种权限选则:typedef enum {/* Nothing special; this node should just inherit from its parent. */PERM_INHERIT,/* This node is one level above a normal root; used for legacy layouts* which use the first level to represent user_id. */PERM_LEGACY_PRE_ROOT,/* This node is "/" */PERM_ROOT,/* This node is "/Android" */PERM_ANDROID,/* This node is "/Android/data" */PERM_ANDROID_DATA,/* This node is "/Android/obb" */PERM_ANDROID_OBB,/* This node is "/Android/user" */PERM_ANDROID_USER,} perm_t;  权限控制的三种方法,/* Permissions structure to derive */typedef enum {DERIVE_NONE,DERIVE_LEGACY,    ====》用于内置sdcard ,主要用于多用户的权限控制DERIVE_UNIFIED,    ====》用于外置sdcard} derive_t;==========================================DERIVE_LEGACYDERIVE_UNIFIED这两个枚举fuck地让我迷糊很久啊,到底有什么不一样啊???分析下面的代码很久才搞明白。==========================================即下来看重要的node结构体 : struct node {    __u32 refcount;     // node 的引用计数    __u64 nid;      //node id ,用于唯一标识node,太聪明了,除root node 使用该node申请的内存指针地址作为id,肯定可以达到唯一性。    /* State derived based on current position in hierarchy. */    perm_t perm;                //权限控制方式    userid_t userid;     //用户id,即,0、 1、 2、 3、 。。。。    uid_t uid;         //uid    gid_t gid;                                 //gid    mode_t mode;                       //访问模式    //node链就和vfs类似了……    struct node *next;          /* per-dir sibling list */    struct node *child;         /* first contained file by this dir */    struct node *parent;        /* containing directory */    size_t namelen;          //node 名长度    char *name;          //node 名};下面fuse_init函数初始化fuse结构体前面已经说过的。这里重点看fuse结构体里的root node结构的初始化。static void fuse_init(struct fuse *fuse, int fd, const char *source_path,        gid_t write_gid, derive_t derive, bool split_perms) {    pthread_mutex_init(&fuse->lock, NULL);    fuse->fd = fd;    fuse->next_generation = 0;     fuse->derive = derive;    fuse->split_perms = split_perms;    fuse->write_gid = write_gid;                                     //初始设置有sdcard读写权限的gid    memset(&fuse->root, 0, sizeof(fuse->root));                 // 创建第一个node,后面的node都往这里插入    fuse->root.nid = FUSE_ROOT_ID; /* 1 */                       //  root node id  = 1 ,    fuse->root.refcount = 2;    fuse->root.namelen = strlen(source_path);    fuse->root.name = strdup(source_path);                         // root node 对应的是什么呢?? 即根目录:'/data/media' , 不要以为是为是'/data/media/0 ' 啊 !    fuse->root.userid = 0;    fuse->root.uid = AID_ROOT;            // uid  :  root    /* Set up root node for various modes of operation */    switch (derive) {    case DERIVE_NONE:        //无权限控制的方式,现在一般不用。无法selinux的要求吧!        /* Traditional behavior that treats entire device as being accessible         * to sdcard_rw, and no permissions are derived. */        fuse->root.perm = PERM_ROOT;        fuse->root.mode = 0775;        fuse->root.gid = AID_SDCARD_RW;        break;    case DERIVE_LEGACY:           //内置sdcard使用,支持多用户的访问独立sdcard数据权限控制方式,//内置sdcard目录顶层为用户id为名的0、1、2、3等用户目录, data/media/0, data/media/1, data/media/2 ............... 等//,目录顶层也包括/data/media/obb 目录// data/media/userid 目录下/data/media/userid/Android/data/ 子目录才是app的么有数据 。        /* Legacy behavior used to support internal multiuser layout which         * places user_id at the top directory level, with the actual roots         * just below that. Shared OBB path is also at top level. */        fuse->root.perm = PERM_LEGACY_PRE_ROOT;                      //root node 的权限,后面根目录下根据useid创建的的0 , 1 ,,2 , 3 .....目录权限为:PERM_ROOT        fuse->root.mode = 0771;        fuse->root.gid = AID_SDCARD_R;                                                                                           // gid =  AID_SDCARD_R        fuse->package_to_appid = hashmapCreate(256, str_hash, str_icase_equals);   // 初始hash Map ,用于做什么? 下面会详细说明,它跟权限有关就是。        fuse->appid_with_rw = hashmapCreate(128, int_hash, int_equals);        snprintf(fuse->obbpath, sizeof(fuse->obbpath), "%s/obb", source_path);        fs_prepare_dir(fuse->obbpath, 0775, getuid(), getgid());              //  创建/data/media/obb 目录,用于apk独立数据访问权限控制的?        LOG("[fuse_debug]obbpath =%s /n",fuse->obbpath);        break;    case DERIVE_UNIFIED:        /* Unified multiuser layout which places secondary user_id under         * /Android/user and shared OBB path under /Android/obb. */// 不支持多用户的的权限控制方式。//  外置sdcard目录顶层即为user 0的用户数据,及Android/obb// 而user 1开始的第二个用户数所都放在Android/user目录下 。        fuse->root.perm = PERM_ROOT;                          // root node 的权限就为PERM_ROOT        fuse->root.mode = 0771;        fuse->root.gid = AID_SDCARD_R;        fuse->package_to_appid = hashmapCreate(256, str_hash, str_icase_equals);        fuse->appid_with_rw = hashmapCreate(128, int_hash, int_equals);        snprintf(fuse->obbpath, sizeof(fuse->obbpath), "%s/Android/obb", source_path);        break;    }}再看下面的这个函数的作用:根据parent node的权限为新的child node 分配权限。static void derive_permissions_locked(struct fuse* fuse, struct node *parent,        struct node *node) {    appid_t appid;    /* By default, each node inherits from its parent */    node->perm = PERM_INHERIT;    node->userid = parent->userid;    node->uid = parent->uid;                               //新的node默认 继承父node uid / gid     node->gid = parent->gid;    node->mode = parent->mode;    if (fuse->derive == DERIVE_NONE) {        return;    } //这里添加一条重要的log打印     TRACE("derive_permissions_locked %s 0%d  (%s)/n",            node->name, parent->perm, parent->name);    /* Derive custom permissions based on parent and current node */    switch (parent->perm) {    case PERM_INHERIT:        /* Already inherited above */        break;    case PERM_LEGACY_PRE_ROOT:       // 内置sdcard的根目录权限为PERM_LEGACY_PRE_ROOT        /* Legacy internal layout places users at top level */        node->perm = PERM_ROOT;                                /内置sdcard的/根目录下,根据用户id创建的0、1、2、3等用户子目录,授权为: PERM_ROOT        node->userid = strtoul(node->name, NULL, 10);  // userid设为0、1、2、3.......        break;    case PERM_ROOT:                                                     //外置sdcard,及内置sdcard根目录下的0、1、2、3等用户子目录的权限为:PERM_ROOT        /* Assume masked off by default. */        node->mode = 0770;  // 下面为外置sdcard根目录下的子目录,及内置sdcard根目录下的0、1、2、3等用户子目录 授予不同权限 :          if (!strcasecmp(node->name, "Android")) {             //root/Android目录授权             /* App-specific directories inside; let anyone traverse */             node->perm = PERM_ANDROID;                              node->mode = 0771;         }         break;    case PERM_ANDROID:        if (!strcasecmp(node->name, "data")) {                                                      // root/Android/data目录授权            /* App-specific directories inside; let anyone traverse */            node->perm = PERM_ANDROID_DATA;                                           node->mode = 0771;        } else if (!strcasecmp(node->name, "obb")) {           // root/Android/obb目录授权             /* App-specific directories inside; let anyone traverse */            node->perm = PERM_ANDROID_OBB;            node->mode = 0771;            /* Single OBB directory is always shared */            node->graft_path = fuse->obbpath;            node->graft_pathlen = strlen(fuse->obbpath);        } else if (!strcasecmp(node->name, "user")) {                                            //root/Android/user目录授权 , 同时修改gid            /* User directories must only be accessible to system, protected             * by sdcard_all. Zygote will bind mount the appropriate user-             * specific path. */            node->perm = PERM_ANDROID_USER;            node->gid = AID_SDCARD_ALL;            node->mode = 0770;        }        break;    case PERM_ANDROID_DATA:                                   // root/Android/data 与 root/Android/obb 目录下的各子目录授权,appid作为uid,让该app独占该目录                           case PERM_ANDROID_OBB:        appid = (appid_t) hashmapGet(fuse->package_to_appid, node->name);   //从haspMap里获取appid         if (appid != 0) {            node->uid = multiuser_get_uid(parent->userid, appid);     // appid 作为uid,让该app才能有权限访问        }        node->mode = 0770;        break;    case PERM_ANDROID_USER:                  //root/Android/user目录授权目录下的的子录目授权,比如外置多用户:sdcard2/user/2 授权为根目录 PERM_ROOT        /* Root of a secondary user */        node->perm = PERM_ROOT;        node->userid = strtoul(node->name, NULL, 10);        node->gid = AID_SDCARD_R;        node->mode = 0771;        break;    }}通过在derive_permissions_locked添加的一句打印log分析看看:#define FUSE_TRACE 1  //打出sdcard service debug log 可以看到下面这些sdcard service 针对内置sdcard的log信息:06-04 17:49:41.993   232   232 I sdcard  : source_path='/data/media', dest_path='/mnt/shell/emulated', derive=1, write_gid=1015这里为根目录/data/media/0  授权02: PERM_ROOT06-04 17:50:03.904   232   251 D sdcard  : [1] LOOKUP 0 @ 1 (/data/media)   06-04 17:50:03.904   232   251 D sdcard  : derive_permissions_locked 0 01  (/data/media)// 为/data/media/0 /Android 授权06-04 17:50:09.023   232   251 D sdcard  : derive_permissions_locked Android 02  (0)// 为/data/media/0 /Android/data  授权06-04 17:50:09.038   232   250 D sdcard  : derive_permissions_locked data 03  (Android)06-04 17:50:09.052   232   251 D sdcard  : derive_permissions_locked com.amap.android.location 04  (data)下面通过/sdcard/Android/data目录的实际的授权结果是什么样的:可以看到uid是随着app变化而变化的。root@S850:/sdcard/Android/data # ls -Z   ////这个目录下创建的都是以app名为的子目录。drwxrwx--- u0_a0    sdcard_r          u:object_r:sdcard_external:s0 com.amap.android.locationdrwxrwx--- u0_a3    sdcard_r          u:object_r:sdcard_external:s0 com.lenovo.carapplicationdrwxrwx--- u0_a67   sdcard_r          u:object_r:sdcard_external:s0 com.len通过上面的代码分析,DERIVE_LEGACY 与DERIVE_UNIFIED 的区别已经很清楚啦!

5、sdcard node访问权限控制

上面提到很多对node授权,实际访问是如何进行权限控制的呢? 其实就是通过上面偶有提到HashMap,下面仔细再看看。fuse 结构体中有两个重要的HashMap变量,如下:struct fuse { 。。。。。。。    Hashmap* package_to_appid;    Hashmap* appid_with_rw; 。。。。。。};fuse_init()函数中对这两个hashMap变量进行了初始化,请看:static void fuse_init(struct fuse *fuse, int fd, const char *source_path,        gid_t write_gid, derive_t derive, bool split_perms) {。。。。。。。。。。。。。。。。    /* Set up root node for various modes of operation */    switch (derive) {。。。。。。。。。。。。。。。。    case DERIVE_LEGACY:   //初始化了两个haspMap实例指针,具体怎么初始化的,请仔细看/system/core/libcutils/hashmap.c        fuse->package_to_appid = hashmapCreate(256, str_hash, str_icase_equals);        fuse->appid_with_rw = hashmapCreate(128, int_hash, int_equals);。。。。。。。。。。。。。。}hashMap是如何创建的呢? 继续 ~……ignite_fuse()函数启动两个fuse handle线程后,主进程调用watch_package_list()进入死循环,watch文件"/data/system/packages.list"。注:packages.list这个文件的内容是系统在启动时扫描出的已安装的应用apk列表信息。内容例子如下:root@:/data/system # cat packages.list                                     com.lakala.android 10111 0 /data/data/com.lakala.android default 1028,1015,1023,3003com.android.defcontainer 10004 0 /data/data/com.android.defcontainer platform 1028,1015,1023,2001,1035下面我们分析一下主进程调用 watch_package_list()如何创建hashMap 的?static void watch_package_list(struct fuse* fuse) {。。。。。。    bool active = false;    while (1) {        if (!active) {            int res = inotify_add_watch(nfd, kPackagesListFile, IN_DELETE_SELF);。。。。。。。。。            /* Watch above will tell us about any future changes, so             * read the current state. */            if (read_package_list(fuse) == -1) {  //解析文件packages.list内容,并创建hashMap                 ERROR("read_package_list failed: %s/n", strerror(errno));                return;            }            active = true;        }。。。。。。。。。。。。。。}hashMap的创建一切就在这里了!static int read_package_list(struct fuse *fuse) {    pthread_mutex_lock(&fuse->lock);  //如果已有hashMap,则清干净。(如果watch到packages.list初删除,就要重新创建hashMap,那就要先清干净原来的旧值了)    hashmapForEach(fuse->package_to_appid, remove_str_to_int, fuse->package_to_appid);    hashmapForEach(fuse->appid_with_rw, remove_int_to_null, fuse->appid_with_rw);    FILE* file = fopen(kPackagesListFile, "r");       //打开文件:packages.list    if (!file) {        ERROR("failed to open package list: %s/n", strerror(errno));        pthread_mutex_unlock(&fuse->lock);        return -1;    }    char buf[512];    bool is_found = false;    while (fgets(buf, sizeof(buf), file) != NULL) {       //读packages.list一行        char package_name[512];        int appid;        char gids[512];        is_found = false;        //从packages.list读取的一行内容,比如:com.lakala.android 10111 0 /data/data/com.lakala.android default 1028,1015,1023,3003   // 解析app名,appid,数据所在目录,app所属组s (可能属于多组啊!)        if (sscanf(buf, "%s %d %*d %*s %*s %s", package_name, &appid, gids) == 3) {     //             char* package_name_dup = strdup(package_name);            hashmapPut(fuse->package_to_appid, package_name_dup, (void*) appid);      // 以app name , app id 创建一个新的hashMap添加到package_to_appid, Map 如下:/* 注:struct Entry {    void* key;       //app name    int hash;          // app name's hash value    void* value;       // app id    Entry* next;};*/            char* token = strtok(gids, ",");                 while (token != NULL) {                if (strtoul(token, NULL, 10) == fuse->write_gid) {  //从上面获取到的app所属组s, 判断是否该app属组 fuse->write_gid(AID_SDCARD_RW)。           hashmapPut(fuse->appid_with_rw, (void*) appid, (void*) 1);           //属于组AID_SDCARD_RW,则有sdcard rw权限,则以app id 和1创建一个新的hashMap添加到appid_with_rw ,Map如下;         /* 注:      struct Entry {          void* key;       //app id          int hash;          // app ids hash value          void* value;       // 1          Entry* next;     };     */                    is_found = true;                    break;                }                token = strtok(NULL, ",");            }            if (is_found == false) {                if (!hashmapContainsKey(fuse->appid_with_rw, (void*) appid)){                    hashmapPut(fuse->appid_with_rw, (void*) appid, (void*) 0);                }            }        }    }    TRACE("read_package_list: found %d packages, %d with write_gid/n",            hashmapSize(fuse->package_to_appid),            hashmapSize(fuse->appid_with_rw));    fclose(file);    pthread_mutex_unlock(&fuse->lock);    return 0;}好的,这样hashMap package_to_appid 和appid_with_rw就创建好了。 接着,看看derive_permissions_locked()是如何根据hashMap进行授权工作的啦!static void derive_permissions_locked(struct fuse* fuse, struct node *parent,        struct node *node) {    appid_t appid;    /* By default, each node inherits from its parent */    node->perm = PERM_INHERIT;    node->userid = parent->userid;    node->uid = parent->uid;    node->gid = parent->gid;    node->mode = parent->mode;。。。。。。。。。。。。。。。。。。。。。。。。    TRACE("derive_permissions_locked %s 0%d  (%s)/n",            node->name, parent->perm, parent->name);                /* Derive custom permissions based on parent and current node */    switch (parent->perm) {。。。。。。。。。。。。。。。。。。。。。。。。    case PERM_ANDROID_DATA:    case PERM_ANDROID_OBB:        appid = (appid_t) hashmapGet(fuse->package_to_appid, node->name);    // 通过node name, 即app名,获取appid。(上面说过,他们有创建过map的)        if (appid != 0) {            node->uid = multiuser_get_uid(parent->userid, appid);        // 通过appid 和 userid 计算出一个唯一的uid(算法:multiuser_get_uid),分配给该app,下面马上用到它了!!        }        node->mode = 0770;        break;。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。    }}下面最后看看如何通过get_caller_has_rw_locked进行访问权限控制的吧!/* Return if the calling UID holds sdcard_rw. */static bool get_caller_has_rw_locked(struct fuse* fuse, const struct fuse_in_header *hdr) {。。。。。。。。。    appid_t appid = multiuser_get_app_id(hdr->uid);   //uid 反算出appid         if (appid == AID_SHELL) {      /* for mtklogger with uid, shell, grant the write permisssion to them */      TRACE("WARNING: appid is AID_SHELL. Grant the write permission to it/n");      return true;    }    else if (hashmapContainsKey(fuse->appid_with_rw, (void*) appid)) {   //判断appid对应的app是否在有权限RW sdcard的hashMap中。       return (bool)hashmapGet(fuse->appid_with_rw, appid);    //返回derive_permissions_locked所授权value: 1,表未有rw权限。//appid_with_rw中的hashMap如下:     struct Entry {          void* key;       //app id          int hash;          // app ids hash value          void* value;       // 1 or 0          Entry* next;     };     */    }    else {       TRACE("WARNING: appid=%d is NOT in packages.list. Grant the write permission to it/n", appid);   //没有授权RW sdcard        return true;    }}
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表