MLC通过4种电平值来实现在一个浮动栅中存储两位信息的目的 MLC目前已经发展至第4代,应用于最新的L18/L30产品。而且不光是NOR型闪存在使用,东芝在今年2月推出第一款MLC型的NAND闪存,显然这对于本来就以容量见长的NAND闪存更是如虎添翼。相比之下,AMD去年开始使用的MirrorBit技术更为巧妙一些,它通过在浮动栅上划分出两块独立的存储区,并配合可相互转变的“源/漏极”设计,可在一个浮动栅存储两个bit的数据。目前除了AMD之外,主要采用MirrorBit厂商是AMD的合作伙伴富士通公司。
MirrorBit的在浮动栅上划分出两个独立的存储区,而可相互转变的源极与漏极可分别对相应的存储区操作 MLC与MirrorBit谁优谁劣暂且不管,至少它们都能在原有的晶体管数量(目前的存储单元都是1T的设计)的基础上,提高一倍的存储容量,也就意味着在相同的核心面积下,芯片的容量可成倍提高,这对闪存(不管是NOR还是NAND型)的扩容来说,实在是个好消息。相对而言,从封装角度入手提高存储容量则是封装技术水平较高的厂商所更喜欢采用的一种捷径,究竟掌上设备的生产者更关心对PCB影响巨大的芯片面积而不是高度(当然,也要在一定的范围内,否则超薄机身就没戏了)。目前MCP(Multi Chip Packageing,多芯片封装)是最常见的方式。而就具体的内在形式而言,就是Stacked,即堆叠装配——将多枚闪存或RAM核心(Die)堆叠在一起,然后统一封装。这与内存的堆叠装配是一样的。配合小尺寸封装(最典型的就是CSP),则在满足封装面积的前提下,又提高了容量,这也是它为什么能被广泛关注的原因,究竟能像Intel和AMD那样开发新的存储技术的厂商很少很少。
FeRAM在结构上与DRAM很像,主要不同就在于使用铁电材料的电容器替代原有DRAM中的电容,从而具备非易失的能力,但在读取是仍需要电容放电,所以与DRAM一样是破坏性读取,这与其他NVM不同
OUM使用类似于CD-RW光盘的相变原理来保存数据,只不过CD-RW上的相变用的是激光加热,改变的是光的反射强度,OUM中的相变材料则是通过施加电场来加热以发生相变,改变的是阻抗值,从而可实现二进制存储并且与CD-RW一样是可重写/非易失的 从存储原理上看,三家都可谓是别具匠心,而不同的设计原理也就决定了它们各自所擅长的领域。 未来“闪存”的较量——FeRAM走在前面 技术往往就是这样,还在实验室中可能就要与同在实验室里的对手暗中较劲了。虽然距它们大量上市的日期还早,但这种较量却早已开始了。不过要声明的是,在这三个候选人之中,FeRAM并不算是未来的产品,它的成品目前已经有不小的应用量,所以与MRAM、OUM相比它的成熟度是最高的。在这三者中,由于在写入时需要改变磁场的缘故,MRAM存在着写入电流大的缺点(是读取电流的8倍),最近通过磁束集中设计(在写入电路上覆盖磁性材料以加强磁场能量)将写入电流强度降低了2/3,但仍是个问题。OUM也是如此,产生相变也需要较大的电流,FeRAM在这方面则表现最好,但也需要非凡的生产工艺,芯片面积同样较大,而且由于是破坏性读取,在综合性能上不如MRAM。OUM则由于使用现有的生产工艺,芯片面积最小,且轻易混载封装,但速度比不上MRAM。在可重写次数方面,MRAM在理论上是无限的,而FeRAM与OUM由于分别采用电容与相变材料保存数据,则都有重写次数的限制,目前的水平是1012次,这已经是相当了不起的成果了。按照Intel早期的看法,最适合非接触型IC卡的存储器是FeRAM。对高性能存储器而言,当然首选速度最快的MRAM。而最适合作为便携终端存储器则是OUM。因为对于便携终端而言,在要求MRAM一样的高速度的同时,对低成本与小体积的要求也很严格。不过,在2003年7月采访英特尔负责NVM等技术开发的Stefan K. Lai时,却得到了对OUM不利的消息。OUM虽然存储单元很小,但外围电路却比NOR闪存更多,因此成本与芯片面积反而是OUM的一个头疼问题。当然,MRAM也在努力完善自己,减小写入电流与芯片面积则是它的首要目标。就目前而言,在实际应用中走得最远的显然是FeRAM,作为全球最大的消费类电子产品厂商——日本松下公司就在今年发力,预备大力推广在系统LSI上混载FeRAM的技术,并将其定为核心级业务。其目标是“首先,将投产面向非接触型IC卡的微控制器,然后再逐步把用途扩大到面向各种数码家电的系统LSI领域。在不久的将来有可能在手机基带中混载LSI。”松下公司选择FeRAM的理由也很简单,按照松下电器产业半导体公司社长古池进的话说就是“与MRAM等其它存储器相比,由于FeRAM更轻易实现深次微米设计,且与CMOS工艺之间的匹配性也更出色,因此决定将其用作核心技术。”从中我们可以看出FeRAM虽然在技术设计上相对于传统DRAM变动最小,但也因此而获得了业界的青睐,并在混载市场中如鱼得水。松下将从2003年8月开始供给作为第一种量产产品的非接触型IC卡微控制器样品,采用0.18μm工艺,2003年12月开始量产供货。最初的量产规模为月产50万个。松下还计划2005年和2007年将分别使用0.13μm工艺和0.09μm工艺开始进行芯片量产。为了实现低于混载SRAM而与混载DRAM相匹敌的存储器单元面积,计划从0.13μm工艺开始采用立体电容结构以对FeRAM做进一步改进。 新闻热点
疑难解答