首页 > 学院 > 开发设计 > 正文

Scikit-Learn-1.2:支持向量机

2019-11-14 17:19:15
字体:
来源:转载
供稿:网友

翻译自:http://scikit-learn.org/stable/modules/svm.html

支持向量机是一种用于分类,回归和离群检测的一种监督学习的方法。

支持向量机的优势有:

  1. 高纬度有效
  2. 维度数大于样点数
  3. 。。。

1.2.1 分类

SVM有三种分类模型:SVC(C-Support Vector Classification.),NuSVC(Nu-Support Vector Classification.),LinearSVC(Linear Support Vector Classification).三者有一定差异。

SVC和NuSVC这两种方法相类似。但是他们接受有些不同的参数集。有不同的数学公式。LinearSVC是另一种支持向量分类的实施方式,它支持线性核函数的输入。他也相比SVC和NuSVC而言少了一些参量,如support_

这三种分类模型,都是输入两个阵列。一个阵列为X,[n_samples,n_features]作为训练样本。另一个y(注意是X和y)作为类标签,size[n_samples].

from sklearn import svmx=[[0,0],[1,1]]y=[0,1]clf=svm.SVC()  #这样clf就表示SVC训练算法clf.fit(X,y) #根据特征,进行训练,提取特征

进行训练完毕之后,可以进行预测了。

clf.PRedict([[2., 2.]])

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表