首页 > 学院 > 开发设计 > 正文

matplotlib入门--1(条形图,直方图,盒须图,饼图)

2019-11-14 17:25:27
字体:
来源:转载
供稿:网友

作图首先要进行数据的输入,matplotlib包只提供作图相关功能,本身并没有数据读入、输出函数,针对各种试验或统计文本数据输入可以使用numpy提供的数据输入函数。

# -*- coding: gbk -*-"""Created on Sun Jan 11 11:17:42 2015@author: zhang"""import numpy as npimport matplotlib.pyplot as pltimport matplotlib as mplmpl.rcParams['font.family'] = 'sans-serif'mpl.rcParams['font.sans-serif'] = [u'SimHei']#生成数据dataOut = np.arange(24).reshape(4, 6)PRint(dataOut)#保存数据np.savetxt('data.txt', dataOut, fmt = '%.1f')#读取数据data = np.loadtxt('data.txt')print(data)

plot 和 bar 函数

# -*- coding: gbk -*-"""Created on Sun Jan 11 11:33:14 2015@author: zhang"""import numpy as npimport matplotlib.pyplot as pltimport matplotlib as mplmpl.rcParams['font.family'] = 'sans-serif'mpl.rcParams['font.sans-serif'] = [u'SimHei']data = np.random.randint(1, 11, 5)x = np.arange(len(data))plt.plot(x, data, color = 'r')plt.bar(x, data, alpha = .5, color = 'g')plt.show()

结果图片

image

饼图

# -*- coding: gbk -*-"""Created on Sun Jan 11 11:33:14 2015@author: zhang"""import numpy as npimport matplotlib.pyplot as pltimport matplotlib as mplmpl.rcParams['font.family'] = 'sans-serif'mpl.rcParams['font.sans-serif'] = [u'SimHei']data = np.random.randint(1, 11, 5)x = np.arange(len(data))#plt.plot(x, data, color = 'r')#plt.bar(x, data, alpha = .5, color = 'g')plt.pie(data, explode = [0,0,.2, 0, 0])plt.show

image

在实际工作中经常要对多组数据进行对比分析,这样需要在一个图表里表示出多个数据集。plot函数多数据集表示方法:

# -*- coding: gbk -*-"""Created on Sun Jan 11 11:51:41 2015@author: zhang"""import numpy as npimport matplotlib.pyplot as pltimport matplotlib as mplmpl.rcParams['font.family'] = 'sans-serif'mpl.rcParams['font.sans-serif'] = [u'SimHei']data = np.random.randint(1, 5, (5, 2))x = np.arange(len(data))plt.plot(x, data[:, 0], '--', color = 'm')plt.plot(x, data[:, 1], '-.', color = 'c')plt.show()

image

这里用到了matplotlib中defered rendering的概念,它是指在绘图过程中,只有你调用到plt.plot函数是其它的绘图指令才会起效。

也可以通过对条形图的定制实现数据对比,主要有这几种类型 multy bar chart;stack bar chart和back to back bar chart

# -*- coding: gbk -*-"""Created on Sun Jan 11 12:03:57 2015@author: zhang"""import numpy as npimport matplotlib.pyplot as pltimport matplotlib as mplmpl.rcParams['font.family'] = 'sans-serif'mpl.rcParams['font.sans-serif'] = [u'SimHei']mpl.rcParams['axes.unicode_minus'] = Falsedata = np.random.randint(1, 5, [3, 4])index = np.arange(data.shape[1])color_index = ['r', 'g', 'b']fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize = (5, 12))for i in range(data.shape[0]):    ax1.bar(index + i*.25 + .1, data[i], width = .25, color = color_index[i],/    alpha = .5)for i in range(data.shape[0]):    ax2.bar(index + .25, data[i], width = .5, color = color_index[i],/    bottom = np.sum(data[:i], axis = 0), alpha = .7)    ax3.barh(index, data[0], color = 'r', alpha = .5)ax3.barh(index, -data[1], color = 'b', alpha = .5)    plt.show()plt.savefig('complex_bar_chart')

complex_bar_chart

统计中常用的两种图标是直方图和盒须图,matplotlib中有针对这两种图表的专门函数:hist和boxplot

# -*- coding: gbk -*-"""Created on Sun Jan 11 12:29:34 2015@author: zhang"""import numpy as npimport matplotlib.pyplot as pltimport matplotlib as mplmpl.rcParams['font.family'] = 'sans-serif'mpl.rcParams['font.sans-serif'] = [u'SimHei']data = np.random.randn(100)fig, (ax1, ax2) = plt.subplots(1, 2, figsize = (8, 4))ax1.hist(data)ax2.boxplot(data)plt.savefig('hist_boxplot')plt.show()

hist_boxplot

本文讲到的所有matplotlib命令都有非常丰富的定制参数,我会在后面文章中讲到,你也可以查看帮助文档学习。


发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表