


,它是图像处理中最常用的一阶微分算法,式子中
表示图像的灰度值,图像梯度的最重要性质是梯度的方向是在图像灰度最大变化率上,它恰好可以放映出图像边缘上的灰度变化。
,对于数字图像来说拉普拉斯算子可以简单表示为:G[I,j]=f[i+1,j]+f[i-1,j]+f(i,j+1)+f[i,j-1]-4f[i,j];它是一个标量而不是向量,具有旋转不变,既各向同性的性质,它经常用在图像处理的过程中。





)和(
)叠加而成,图像的直方图将会出现两个分离的峰值,如图五所示。对于这样的图像,分割阈值可以选择直方图的两个波峰间的波谷所对应的灰度值作为分割的阈值。这种分割方法不可避免的会出现误分割,使一部分本属于背景的像素被判决为物体,属于物体的一部分像素同样会被误认为是背景。可以证实,当物体的尺寸和背景相等时,这样选择阈值可以使误分概率达到最小。在大多数情况下,由于图像的直方图在波谷四周的像素很稀疏,因此这种方法对图像的分割影响不大。这一方法可以推广到具有不同灰度均值的多物体图像。
和
,计算区域
和
的均值
和
,选择新的分割阈值T=(
)/2,重复上述步骤直到
和
不再变化为止。Photoshop教程 数据结构 五笔输入法专题 QQ病毒专题 共享上网专题 Google工具和服务专题 后来"熵"的概念被引入了图像处理技术,人们提出了许多基于熵的阈值分割法。1980年,Pun提出了最大后验熵上限法,1985年,Kapur等人提出了一维最大熵阈值法,1989年Arutaleb将一维最大熵阈值法与Kirby等人的二维阈值方法相结合,提出了二维熵阈值法。对于一维最大熵分割方法,它的思想是统计图像中每一个灰度级出现的概率
,计算该灰度级的熵
,假设以灰度级T分割图像,图像中低于T灰度级的像素点构成目标物体(O),高于灰度级T的像素点构成背景(B),那么各个灰度级在本区的分布概率为:
i=1,2……,t
i=t+1,t+2……L-1
,这样对于数字图像中的目标和背景区域的熵分别为:
,选取使w最大的灰度级作为分割图像的阈值,这就是一维最大熵阈值图像分割法。我们定义了一个函数GetMaxHtoThrod()来实现该算法,它的返回值就是用来分割图像的阈值。
,假如图像的最大灰度级为
,那么
(i,j=0,1…
)就构成了该图像关于点灰度-区域均值的二维直方图。对于给定的图像,由于大部份的像素点属于目标区域或背景,而目标和背景区域内部像素点的灰度级比较均匀,像素点的灰度和其邻域均值的灰度级相差不大,所以图像对应的二维直方图
主要集中在i,j平面的对角线四周,并且在总体上呈现双峰和一谷的状态,两个峰分别对应于目标和背景。在远离IOJ平面对角线的坐标处,峰的高度迅速下降,这部分对应着图像中的噪声点、杂散点和边缘点。二维直方图的IOJ平面图如图六所示,沿对角线的方向分布的A区、B区分别代表目标和背景,远离对角线分布的C区、D区分别代表边界和噪声,所以应该在A区和B区上用点灰度-区域灰度平均值二维最大熵法确定阈值,使之分割的目标和背景的信息量最大。


)分别计算w=H(A)+H(B),选取使w达到最大的(
)作为最佳分割图像的阈值。该算法实现的函数和上述一维最大熵算法大同小异,只是在二值化时对图像上的像素点不仅要考虑灰度值,同时还要考虑该点邻域的灰度均值。


新闻热点
疑难解答