首页 > 编程 > Python > 正文

Python2比较当前图片跟图库哪个图片相似的方法示例

2019-11-25 11:38:48
字体:
来源:转载
供稿:网友

本文实例讲述了Python2比较当前图片跟图库哪个图片相似的方法。分享给大家供大家参考,具体如下:

# -*- coding: utf-8 -*-'''Created on 2019年7月22日'''from selenium import webdriverfrom time import sleepfrom PIL import Imageimport randomimport osimport cv2import numpy as npurl ="URL"driver = webdriver.Chrome()driver.implicitly_wait(10)driver.maximize_window()driver.get(url)sleep(2)driver.save_screenshot("E:/test/das.png")p1=r'E:/test/das1.png'p2=r'E:/test/das2.png'p3=r'E:/test/das3.png'p4=r'E:/test/das4.png'element = driver.find_element_by_id("imgcode")left = element.location['x']top = element.location['y']right = element.location['x'] + element.size['width']bottom = element.location['y'] + element.size['height']im1 = Image.open(r'E:/test/das.png')im1 = im1.crop((left, top, right, bottom))im1.save(r"E:/test/dascode.png")img = Image.open("E:/test/dascode.png")cropped = img.crop((0, 0, 25, 30)) # (left, upper, right, lower)cropped.save(p1)cropped = img.crop((25, 0, 50, 30)) # (left, upper, right, lower)cropped.save(p2)cropped = img.crop((50, 0, 75, 30)) # (left, upper, right, lower)cropped.save(p3)cropped = img.crop((75, 0, 96, 30)) # (left, upper, right, lower)cropped.save(p4)def getGray(image_file):  tmpls=[]  for h in range(0, image_file.size[1]):#h    for w in range(0, image_file.size[0]):#w      tmpls.append( image_file.getpixel((w,h)) )  return tmplsdef getAvg(ls):#获取平均灰度值  return sum(ls)/len(ls)def aHash(fne):  image_file = Image.open(fne) # 打开  image_file=image_file.resize((35,35))#重置图片大小我12px X 12px  image_file=image_file.convert("L")#转256灰度图  Grayls=getGray(image_file)#灰度集合  avg=getAvg(Grayls)#灰度平均值  bitls=''#接收获取0或1  for h in range(1, image_file.size[1]-1):#h    for w in range(1, image_file.size[0]-1):#w      if image_file.getpixel((w,h))>=avg:#像素的值比较平均值 大于记为1 小于记为0        bitls=bitls+'1'      else:        bitls=bitls+'0'  return bitlsdef getMH(i1,i2):  a=aHash(i1)  b=aHash(i2)  dist = 0;  for i in range(0,len(a)):    if a[i]==b[i]:      dist=dist+1  return distdef match(a,rootdir):  list = os.listdir(rootdir)   li=[]  for i in list:    re=getMH(a,rootdir+"/"+i)    li.append(re)  b=str(li.index(max(li))+1)    a=li.index(max(li))  return b,list[a].split(".")[0]a=match('E:/test/das4.png',"E:/test/pic4")print a

另附参考的

# -*- coding: utf-8 -*-'''Created on 2018年5月17日'''from selenium import webdriverfrom PIL import Imageimport requestsimport timeimport base64import base64import requestsfrom urllib import urlencodeimport json# requests.packages.urllib3.disable_warnings()import datetimefrom time import strftimefrom time import sleepfrom PIL import Image# import pytesseractfrom PIL import Imageimport osimport cv2from numpy import average, dot, linalgimport heapqimport collectionsfrom lib.readConfig import Readconfigconf=Readconfig()filedir=conf.getConfigValue("filedir")def getGray(image_file):  tmpls=[]  for h in range(0, image_file.size[1]):#h    for w in range(0, image_file.size[0]):#w      tmpls.append( image_file.getpixel((w,h)) )  return tmplsdef getAvg(ls):#获取平均灰度值  return sum(ls)/len(ls)def getMH(i1,i2):  a=getImgHash(i1)  b=getImgHash(i2)  dist = 0;  for i in range(0,len(a)):    if a[i]==b[i]:      dist=dist+1  return distdef getImgHash(fne):  image_file = Image.open(fne) # 打开  image_file=image_file.resize((35,35))#重置图片大小我12px X 12px  image_file=image_file.convert("L")#转256灰度图  Grayls=getGray(image_file)#灰度集合  avg=getAvg(Grayls)#灰度平均值  bitls=''#接收获取0或1  for h in range(1, image_file.size[1]-1):#h    for w in range(1, image_file.size[0]-1):#w      if image_file.getpixel((w,h))>=avg:#像素的值比较平均值 大于记为1 小于记为0        bitls=bitls+'1'      else:        bitls=bitls+'0'  return bitlsdef match1(a,rootdir):  list = os.listdir(rootdir)   li=[]  for i in list:#     print rootdir+"/"+i    re=getMH(a,rootdir+"/"+i)    li.append(re)#   print li#   print max(li)  b=str(li.index(max(li))+1)    return bdef g_code(pic):  dic={"1":"2","2":"3","3":"4","4":"5","5":"6","6":"7","7":"8","8":"9","9":"a","10":"b","11":"c","12":"d","13":"e","14":"f","15":"g","16":"h","17":"i","18":"j","19":"k","20":"m","21":"n","22":"p","23":"q","24":"r","25":"s","26":"t","27":"u","28":"v","29":"w","30":"x","31":"y","32":"z"}  img = Image.open(pic)  a=img.size[0]  b=img.size[1]  p1=filedir+r'eos_tdym/lib/pic/das1.png'  p2=filedir+r'eos_tdym/lib/pic/das2.png'  p3=filedir+r'eos_tdym/lib/pic/das3.png'  p4=filedir+r'eos_tdym/lib/pic/das4.png'  dir1=filedir+r'eos_tdym/lib/pic/pic1'  dir2=filedir+r'eos_tdym/lib/pic/pic2'  dir3=filedir+r'eos_tdym/lib/pic/pic3'  dir4=filedir+r'eos_tdym/lib/pic/pic4'  cropped = img.crop((0, 0, 25, 30)) # (left, upper, right, lower)  cropped.save(p1)  cropped = img.crop((25, 0, 50, 30)) # (left, upper, right, lower)  cropped.save(p2)  cropped = img.crop((50, 0, 75, 30)) # (left, upper, right, lower)  cropped.save(p3)  cropped = img.crop((75, 0, 96, 30)) # (left, upper, right, lower)  cropped.save(p4)  re1=str(match1(p1,dir1))  re2=str(match1(p2,dir2))  re3=str(match1(p3,dir3))  re4=str(match1(p4,dir4))  print u"获取到验证码:"+dic[re1]+dic[re2]+dic[re3]+dic[re4]  return dic[re1],dic[re2],dic[re3],dic[re4]def g_code1(pic):  dic={"1":"2","2":"3","3":"4","4":"5","5":"6","6":"7","7":"8","8":"9","9":"a","10":"b","11":"c","12":"d","13":"e","14":"f","15":"g","16":"h","17":"i","18":"j","19":"k","20":"m","21":"n","22":"p","23":"q","24":"r","25":"s","26":"t","27":"u","28":"v","29":"w","30":"x","31":"y","32":"z"}  img = Image.open(pic)  a=img.size[0]  b=img.size[1]  p1="pic5/das1.png"  p2="pic5/das2.png"  p3="pic5/das3.png"  p4="pic5/das4.png"  dir1="pic1"  dir2="pic2"  dir3="pic3"  dir4="pic4"  cropped = img.crop((0, 0, 25, 30)) # (left, upper, right, lower)  cropped.save(p1)  cropped = img.crop((25, 0, 50, 30)) # (left, upper, right, lower)  cropped.save(p2)  cropped = img.crop((50, 0, 75, 30)) # (left, upper, right, lower)  cropped.save(p3)  cropped = img.crop((75, 0, 96, 30)) # (left, upper, right, lower)  cropped.save(p4)  re1=match1(p1,dir1)  re2=match1(p2,dir2)  re3=match1(p3,dir3)  re4=match1(p4,dir4)  print dic[re1]  print dic[re2]  print dic[re3]  print dic[re4]  return dic[re1],dic[re2],dic[re3],dic[re4]

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python图片操作技巧总结》、《Python数据结构与算法教程》、《Python Socket编程技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总

希望本文所述对大家Python程序设计有所帮助。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表