首页 > 编程 > Python > 正文

如何用Python来理一理红楼梦里的那些关系

2019-11-25 11:59:12
字体:
来源:转载
供稿:网友

前言

今天,一起用 Python 来理一理红楼梦里的那些关系

不要问我为啥是红楼梦,而不是水浒三国或西游,因为我也鉴定的认为,红楼才是无可争议的中国古典小说只巅峰,且不接受反驳!而红楼梦也是我多次反复品读的为数不多的小说,对它的感情也是最深的。

好了,不酸了,开干。

数据准备

红楼梦 TXT 文件一份

金陵十二钗 + 贾宝玉 人物名称列表

人物列表内容如下:

宝玉 nr黛玉 nr宝钗 nr湘云 nr凤姐 nr李纨 nr元春 nr迎春 nr探春 nr惜春 nr妙玉 nr巧姐 nr秦氏 nr

这份列表,同时也是为了做分词时使用,后面的 nr 就是人名的意思。

数据处理

读取数据并加载词典

  with open("红楼梦.txt", encoding='gb18030') as f:    honglou = f.readlines()  jieba.load_userdict("renwu_forcut")  renwu_data = pd.read_csv("renwu_forcut", header=-1)  mylist = [k[0].split(" ")[0] for k in renwu_data.values.tolist()]

这样,我们就把红楼梦读取到了 honglou 这个变量当中,同时也通过 load_userdict 将我们自定义的词典加载到了 jieba 库中。

对文本进行分词处理并提取

tmpNames = []  names = {}  relationships = {}  for h in honglou:    h.replace("贾妃", "元春")    h.replace("李宫裁", "李纨")    poss = pseg.cut(h)    tmpNames.append([])    for w in poss:      if w.flag != 'nr' or len(w.word) != 2 or w.word not in mylist:        continue      tmpNames[-1].append(w.word)      if names.get(w.word) is None:        names[w.word] = 0      relationships[w.word] = {}      names[w.word] += 1
  • 首先,因为文中"贾妃", "元春","李宫裁", "李纨" 混用严重,所以这里直接做替换处理。
  • 然后使用 jieba 库提供的 pseg 工具来做分词处理,会返回每个分词的词性。
  • 之后做判断,只有符合要求且在我们提供的字典列表里的分词,才会保留。
  • 一个人每出现一次,就会增加一,方便后面画关系图时,人物 node 大小的确定。
  • 对于存在于我们自定义词典的人名,保存到一个临时变量当中 tmpNames。

处理人物关系

  for name in tmpNames:    for name1 in name:      for name2 in name:        if name1 == name2:          continue        if relationships[name1].get(name2) is None:          relationships[name1][name2] = 1        else:          relationships[name1][name2] += 1

对于出现在同一个段落中的人物,我们认为他们是关系紧密的,每同时出现一次,关系增加1.

保存到文件

  with open("relationship.csv", "w", encoding='utf-8') as f:    f.write("Source,Target,Weight/n")    for name, edges in relationships.items():      for v, w in edges.items():        f.write(name + "," + v + "," + str(w) + "/n")  with open("NameNode.csv", "w", encoding='utf-8') as f:    f.write("ID,Label,Weight/n")    for name, times in names.items():      f.write(name + "," + name + "," + str(times) + "/n")
  • 文件1:人物关系表,包含首先出现的人物、之后出现的人物和一同出现次数
  • 文件2:人物比重表,包含该人物总体出现次数,出现次数越多,认为所占比重越大。

制作关系图表

使用 pyecharts 作图

def deal_graph():  relationship_data = pd.read_csv('relationship.csv')  namenode_data = pd.read_csv('NameNode.csv')  relationship_data_list = relationship_data.values.tolist()  namenode_data_list = namenode_data.values.tolist()  nodes = []  for node in namenode_data_list:    if node[0] == "宝玉":      node[2] = node[2]/3    nodes.append({"name": node[0], "symbolSize": node[2]/30})  links = []  for link in relationship_data_list:    links.append({"source": link[0], "target": link[1], "value": link[2]})  g = (    Graph()    .add("", nodes, links, repulsion=8000)    .set_global_opts(title_opts=opts.TitleOpts(title="红楼人物关系"))  )  return g

首先把两个文件读取成列表形式

对于“宝玉”,由于其占比过大,如果统一进行缩放,会导致其他人物的 node 过小,展示不美观,所以这里先做了一次缩放

最后得出的关系图

所有代码已经上传至 Github

最后,我还准备了一份更加全面的红楼人物字典,可以在代码仓库中找到-“renwu_total”,感兴趣的小伙伴也可以尝试下,制作一个全人物的关系图。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持武林网。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表