首页 > 编程 > Python > 正文

详解python实现小波变换的一个简单例子

2019-11-25 12:19:52
字体:
来源:转载
供稿:网友

最近工作需要,看了一下小波变换方面的东西,用python实现了一个简单的小波变换类,将来可以用在工作中。

简单说几句原理,小波变换类似于傅里叶变换,都是把函数用一组正交基函数展开,选取不同的基函数给出不同的变换。例如傅里叶变换,选择的是sin和cos,或者exp(ikx)这种复指数函数;而小波变换,选取基函数的方式更加灵活,可以根据要处理的数据的特点(比如某一段上信息量比较多),在不同尺度上采用不同的频宽来对已知信号进行分解,从而尽可能保留多一点信息,同时又避免了原始傅里叶变换的大计算量。以下计算采用的是haar基,它把函数分为2段(A1和B1,但第一次不分),对第一段内相邻的2个采样点进行变换(只考虑A1),变换矩阵为

sqrt(0.5)       sqrt(0.5)

sqrt(0.5)        -sqrt(0.5)

变换完之后,再把第一段(A1)分为两段,同样对相邻的点进行变换,直到无法再分。

下面直接上代码

Wavelet.py

import math class wave:  def __init__(self):    M_SQRT1_2 = math.sqrt(0.5)    self.h1 = [M_SQRT1_2, M_SQRT1_2]    self.g1 = [M_SQRT1_2, -M_SQRT1_2]    self.h2 = [M_SQRT1_2, M_SQRT1_2]    self.g2 = [M_SQRT1_2, -M_SQRT1_2]    self.nc = 2    self.offset = 0   def __del__(self):    return class Wavelet:  def __init__(self, n):    self._haar_centered_Init()    self._scratch = []    for i in range(0,n):      self._scratch.append(0.0)    return      def __del__(self):    return      def transform_inverse(self, list, stride):    self._wavelet_transform(list, stride, -1)    return      def transform_forward(self, list, stride):    self._wavelet_transform(list, stride, 1)    return      def _haarInit(self):    self._wave = wave()    self._wave.offset = 0    return      def _haar_centered_Init(self):    self._wave = wave()    self._wave.offset = 1    return      def _wavelet_transform(self, list, stride, dir):    n = len(list)    if (len(self._scratch) < n):      print("not enough workspace provided")      exit()    if (not self._ispower2(n)):      print("the list size is not a power of 2")      exit()        if (n < 2):      return     if (dir == 1): # 正变换      i = n      while(i >= 2):        self._step(list, stride, i, dir)        i = i>>1           if (dir == -1):  # 逆变换      i = 2      while(i <= n):        self._step(list, stride, i, dir)        i = i << 1    return      def _ispower2(self, n):    power = math.log(n,2)    intpow = int(power)    intn = math.pow(2,intpow)    if (abs(n - intn) > 1e-6):      return False    else:      return True        def _step(self, list, stride, n, dir):    for i in range(0, len(self._scratch)):      self._scratch[i] = 0.0        nmod = self._wave.nc * n    nmod -= self._wave.offset    n1 = n - 1    nh = n >> 1        if (dir == 1): # 正变换      ii = 0      i = 0      while (i < n):        h = 0        g = 0        ni = i + nmod        for k in range(0, self._wave.nc):          jf = n1 & (ni + k)          h += self._wave.h1[k] * list[stride*jf]          g += self._wave.g1[k] * list[stride*jf]        self._scratch[ii] += h        self._scratch[ii + nh] += g        i += 2        ii += 1        if (dir == -1):  # 逆变换      ii = 0      i = 0      while (i < n):        ai = list[stride*ii]        ai1 = list[stride*(ii+nh)]        ni = i + nmod        for k in range(0, self._wave.nc):          jf = n1 & (ni + k)          self._scratch[jf] += self._wave.h2[k] * ai + self._wave.g2[k] * ai1        i += 2        ii += 1            for i in range(0, n):      list[stride*i] = self._scratch[i]

测试代码如下:

test.py

import mathimport Wavelet waveletn = 256waveletnc = 20  #保留的分量数wavelettest = Wavelet.Wavelet(waveletn)waveletorigindata = []waveletdata = []for i in range(0, waveletn):  waveletorigindata.append(math.sin(i)*math.exp(-math.pow((i-100)/50,2))+1)  waveletdata.append(waveletorigindata[-1])  Wavelet.wavelettest.transform_forward(waveletdata, 1)newdata = sorted(waveletdata, key = lambda ele: abs(ele), reverse=True)for i in range(waveletnc, waveletn):  # 筛选出前 waveletnc个分量保留  for j in range(0, waveletn):    if (abs(newdata[i] - waveletdata[j]) < 1e-6):      waveletdata[j] = 0.0      break  Wavelet.wavelettest.transform_inverse(waveletdata, 1)waveleterr = 0.0for i in range(0, waveletn):  print(waveletorigindata[i], ",", waveletdata[i])  waveleterr += abs(waveletorigindata[i] - waveletdata[i])/abs(waveletorigindata[i])print("error: ", waveleterr/waveletn)

当waveletnc = 20时,可得到下图,误差大约为2.1

当waveletnc = 100时,则为下图,误差大约为0.04

当waveletnc = 200时,得到下图,误差大约为0.0005

 以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持武林网。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表