首页 > 编程 > Python > 正文

python pandas时序处理相关功能详解

2019-11-25 12:33:05
字体:
来源:转载
供稿:网友

创建时间序列

函数pd.date_range()

根据指定的范围,生成时间序列DatetimeIndex,每隔元素的类型为Timestamp。该函数应用较多。

ts = pd.date_range('2017-09-01', periods=10, freq='d', normalize=False)ts

输出为:

DatetimeIndex(['2017-09-01', '2017-09-02', '2017-09-03', '2017-09-04','2017-09-05', '2017-09-06', '2017-09-07', '2017-09-08','2017-09-09', '2017-09-10'],dtype='datetime64[ns]', freq='D'

主要的入参解析:

  • start: 开始时刻,可以是字符串或者datetime类型的值。默认None。
  • end: 结束时刻,可以是字符串或者datetime类型的值,如果指定了长度,即periods,则可不设置。默认None。
  • periods: 时序的长度,整型类型。如果有end,可不设置。默认None。
  • freq: 时序生成的频率,即每隔多少时刻生成一个时序点。字符串类型或者DateOffset类型。默认'D',即天粒度,见上述代码输出。
  • tz: 时区,字符串类型。默认None。
  • normalize: bool类型,没用过,不知道干啥的。
  • name: 设置时序的名称,字符串类型,默认None。
  • closed: 是否包含两边的值。默认None,即两边都保留。

其中,freq的取值可以为如下的符号表示间隔,可以结合符号和数字,如'3d',表示每隔三天记录一个时间点。大小写都可以。

B business day frequencyC custom business day frequency (experimental)D calendar day frequencyW weekly frequencyM month end frequencySM semi-month end frequency (15th and end of month)BM business month end frequencyCBM custom business month end frequencyMS month start frequencySMS semi-month start frequency (1st and 15th)BMS business month start frequencyCBMS custom business month start frequencyQ quarter end frequencyBQ business quarter endfrequencyQS quarter start frequencyBQS business quarter start frequencyA year end frequencyBA business year end frequencyAS year start frequencyBAS business year start frequencyBH business hour frequencyH hourly frequencyT, min minutely frequencyS secondly frequencyL, ms millisecondsU, us microsecondsN nanoseconds

字符串转换为时间戳

pd.to_datetime() 函数可以将表示时间的字符串转换位TimeStamp。

pd.to_datetime('2017-09-01')

输出为:

Timestamp('2017-09-01 00:00:00')

常用的参数:

format: 用来设置字符串的格式,默认如上所示。

时间戳的加减
有时候需要将时间进行增减,可以使用类型:DateOffset。

pd.to_datetime('2017-09-01') + pd.DateOffset(days=10) 

输出为:

Timestamp('2017-09-11 00:00:00')

DateOffset常用的参数:

  • months,设置月。
  • days,设置天。
  • years,设置年。
  • hours,设置小时。
  • minutes,设置分钟。
  • seconds,设置秒。

以上可以同时设置,组合使用。

pd.to_datetime('2017-09-01') + pd.DateOffset(seconds=10, days = 10)

输出为:

Timestamp('2017-09-11 00:00:10')

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持武林网。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表