首页 > 编程 > Python > 正文

python中的decimal类型转换实例详解

2019-11-25 12:38:26
字体:
来源:转载
供稿:网友

[Python标准库]decimal――定点数和浮点数的数学运算

        作用:使用定点数和浮点数的小数运算。
        Python 版本:2.4 及以后版本

        decimal 模块实现了定点和浮点算术运算符,使用的是大多数人所熟悉的模型,而不是程序员熟悉的模型,即大多数计算机硬件实现的 IEEE 浮点数运算。Decimal 实例可以准确地表示任何数,对其上取整或下取整,还可以对有效数字个数加以限制。

Decimal

         小数值表示为 Decimal 类的实例。构造函数取一个整数或字符串作为参数。使用浮点数创建 Decimal 之前,可以先将浮点数转换为一个字符串,使调用者能够显式地处理值得位数,倘若使用硬件浮点数表示则无法准确地表述。另外,利用类方法 from_float() 可以转换为精确的小数表示。 

import decimal fmt = '{0:<25} {1:<25}' print fmt.format('Input', 'Output') print fmt.format('-' * 25, '-' * 25) # Integer print fmt.format(5, decimal.Decimal(5)) # String print fmt.format('3.14', decimal.Decimal('3.14')) # Float f = 0.1 print fmt.format(repr(f), decimal.Decimal(str(f))) print fmt.format('%.23g' % f, str(decimal.Decimal.from_float(f))[:25]) 

        浮点数值 0.1 并不表示为一个精确的二进制值,所以 float 的表示与 Decimal 值不同。在这个输出中它被截断为 25 个字符。

        Decimal 还可以由元组创建,其中包含一个符号标志(0 表示正,1 表示负)、数字 tuple 以及一个整数指数。 

import decimal # Tuple t = (1, (1, 1), -2) print 'Input :', t print 'Decimal:', decimal.Decimal(t) 

        基于元组的表示创建时不太方便,不过它提供了一种可移植的方式,可以导出小数值而不会损失精度。tuple 形式可以在网络上传输,或者在不支持精确小数值得数据库中存储,以后再转回回 Decimal 实例。

算术运算

        Decimal 重载了简单的算术运算符,所以可以采用内置数值类型同样的方式处理 Decimal 实例。

import decimal a = decimal.Decimal('5.1') b = decimal.Decimal('3.14') c = 4 d = 3.14 print 'a  =', repr(a) print 'b  =', repr(b) print 'c  =', repr(c) print 'd  =', repr(d) print print 'a + b =', a + b print 'a - b =', a - b print 'a * b =', a * b print 'a / b =', a / b print print 'a + c =', a + c print 'a - c =', a - c print 'a * c =', a * c print 'a / c =', a / c print print 'a + d =', try:  print a + d except TypeError, e:  print e 

        Decimal 运算符还接受整数参数,不过浮点数值必须转换为 Decimal 实例。

        除了基本算术运算,Decimal 还包括一些方法来查找以 10 为底的对数和自然对数。log10() 和 ln() 返回的值都是 Decimal 实例,所以可以与其他值一样直接在公式中使用。

特殊值  

      除了期望的数字值,Decimal 还可以表示很多特殊值,包括正负无穷大值、“不是一个数”(NaN)和 0。

import decimal for value in [ 'Infinity', 'NaN', '0' ]:  print decimal.Decimal(value), decimal.Decimal('-' + value) print # Math with infinity print 'Infinity + 1:', (decimal.Decimal('Infinity') + 1) print '-Infinity + 1:', (decimal.Decimal('-Infinity') + 1) # Print comparing NaN print decimal.Decimal('NaN') == decimal.Decimal('Infinity') print decimal.Decimal('NaN') != decimal.Decimal(1) 

        与无穷大值相加会返回另一个无穷大值。与 NaN 比较相等性总会返回 false,而比较不等性总会返回 true。与 NaN 比较大小来确定排序顺序没有明确定义,这会导致一个错误。

上下文

        到目前为止,前面的例子使用的都是 decimal 模块的默认行为。还可以使用一个上下文(context)覆盖某些设置,如保持精度、如何完成取整、错误处理等等。上下文可以应用于一个线程中的所有 Decimal 实例,或者局部应用于一个小代码区。     

 1. 当前上下文

        要获取当前全局上下文,可以使用 getcontext()。

import decimal import pprint context = decimal.getcontext() print 'Emax   =', context.Emax print 'Emin   =', context.Emin print 'capitals =', context.capitals print 'prec   =', context.prec print 'rounding =', context.rounding print 'flags  =' pprint.pprint(context.flags) print 'traps  =' pprint.pprint(context.traps) 

        这个示例脚本显示了 Context 的公共属性。

        2. 精度

        上下文的 prec 属性控制着作为算术运算结果所创建的新值的精度。字面量值会按这个属性保持精度。

import decimal d = decimal.Decimal('0.123456') for i in range(4):   decimal.getcontext().prec = i   print i, ':', d, d * 1 

        要改变精度,可以直接为这个属性赋一个新值。

        3. 取整

        取整有多种选择,以保证值在所需精度范围内。

•ROUND_CEILING 总是趋向于无穷大向上取整。
•ROUND_DOWN 总是趋向 0 取整。
•ROUND_FLOOR 总是趋向负无穷大向下取整。
•ROUND_HALF_DOWN 如果最后一个有效数字大于或等于 5 则朝 0 反方向取整;否则,趋向 0 取整。
•ROUND_HALF_EVEN 类似于 ROUND_HALF_DOWN,不过,如果最后一个有效数字值为 5,则会检查前一位。偶数值会导致结果向下取整,奇数值导致结果向上取整。
•ROUND_HALF_UP 类似于 ROUND_HALF_DOWN,不过如果最后一位有效数字为 5,值会朝 0 的反方向取整。
•ROUND_UP 朝 0 的反方向取整。
•ROUND_05UP 如果最后一位是 0 或 5,则朝 0 的反方向取整;否则向 0 取整。

import decimal  context = decimal.getcontext() ROUNDING_MODES = [   'ROUND_CEILING',   'ROUND_DOWN',   'ROUND_FLOOR',   'ROUND_HALF_DOWN',   'ROUND_HALF_EVEN',   'ROUND_HALF_UP',   'ROUND_UP',   'ROUND_05UP',   ] header_fmt = '{:10} ' + ' '.join(['{:^8}'] * 6) print header_fmt.format(' ',             '1/8 (1)', '-1/8 (1)',             '1/8 (2)', '-1/8 (2)',             '1/8 (3)', '-1/8 (3)',             ) for rounding_mode in ROUNDING_MODES:   print '{0:10}'.format(rounding_mode.partition('_')[-1]),   for precision in [ 1, 2, 3 ]:     context.prec = precision     context.rounding = getattr(decimal, rounding_mode)     value = decimal.Decimal(1) / decimal.Decimal(8)     print '{0:^8}'.format(value),     value = decimal.Decimal(-1) / decimal.Decimal(8)     print '{0:^8}'.format(value),   print 

 这个程序显示了使用不同算法将同一个值取整为不同精度的效果。

        4. 局部上下文

        使用 Python 2.5 或以后版本时,可以使用 with 语句对一个代码块应用上下文。

import decimal with decimal.localcontext() as c:   c.prec = 2   print 'Local precision:', c.prec   print '3.14 / 3 =', (decimal.Decimal('3.14') / 3) print print 'Default precision:', decimal.getcontext().prec print '3.14 / 3 =', (decimal.Decimal('3.14') / 3) 

      Context 支持 with 使用的上下文管理器 API,所以这个设置只在块内应用。

        5. 各实例上下文

        上下文还可以用来构造 Decimal 实例,然后可以从这个上下文继承精度和转换的取整参数。

import decimal # Set up a context with limited precision c = decimal.getcontext().copy() c.prec = 3 # Create our constant pi = c.create_decimal('3.1415') # The constant value is rounded off print 'PI  :', pi  # The result of using the constant uses the global context print 'RESULT:', decimal.Decimal('2.01') * pi 

        这样一来,应用就可以区别于用户数据精度而另外选择常量值精度。

        6. 线程

        “全局”上下文实际上是线程本地上下文,所以完全可以使用不同的值分别配置各个线程。

import decimal import threading from Queue import PriorityQueue class Multiplier(threading.Thread):   def __init__(self, a, b, prec, q):     self.a = a     self.b = b     self.prec = prec     self.q = q     threading.Thread.__init__(self)   def run(self):     c = decimal.getcontext().copy()     c.prec = self.prec  decimal.setcontext(c)     self.q.put( (self.prec, a * b) )     return  a = decimal.Decimal('3.14') b = decimal.Decimal('1.234') # A PriorityQueue will return values sorted by precision, no matter # what order the threads finish. q = PriorityQueue() threads = [ Multiplier(a, b, i, q) for i in range(1, 6) ] for t in threads:   t.start()  for t in threads:   t.join()  for i in range(5):   prec, value = q.get()   print prec, '/t', value 

这个例子使用指定的值创建一个新的上下文,然后安装到各个线程中。

总结

以上所述是小编给大家介绍的python中的decimal类型转换实例详解,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对武林网网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表