1.场景,对于colums都相同的dataframe做过滤的时候
例如:
df1 = DataFrame([['a', 10, '男'], ['b', 11, '男'], ['c', 11, '女'], ['a', 10, '女'], ['c', 11, '男']], columns=['name', 'age', 'sex'])df2 = DataFrame([['a', 10, '男'], ['b', 11, '女']], columns=['name', 'age', 'sex'])
取交集:print(pd.merge(df1,df2,on=['name', 'age', 'sex']))
取并集:print(pd.merge(df1,df2,on=['name', 'age', 'sex'], how='outer'))
取差集(从df1中过滤df1在df2中存在的行):
df1 = df1.append(df2)df1 = df1.append(df2)df1 = df1.drop_duplicates(subset=['name', 'age', 'sex'],keep=False)print(df1)
代码:
# -*- coding:utf-8 -*-__version__ = '1.0.0.0'"""@brief : 简介@details: 详细信息@author : zhphuang@date : 2018-10-29"""import pandas as pdfrom pandas import *df1 = DataFrame([['a', 10, '男'], ['b', 11, '男'], ['c', 11, '女'], ['a', 10, '女'], ['c', 11, '男']], columns=['name', 'age', 'sex'])print("df1:/n%s/n/n" % df1)df2 = DataFrame([['a', 10, '男'], ['b', 11, '女']], columns=['name', 'age', 'sex'])print("df2:/n%s/n/n" % df2)# 取交集print("交集:/n%s/n/n" % pd.merge(df1,df2,on=['name', 'age', 'sex']))# 取并集print("并集:/n%s/n/n" % pd.merge(df1,df2,on=['name', 'age', 'sex'], how='outer'))# 从df1中过滤df1在df2中存在的行,也就是取补集df1 = df1.append(df2)df1 = df1.append(df2)print("补集(从df1中过滤df1在df2中存在的行):/n%s/n/n" % df1.drop_duplicates(subset=['name', 'age', 'sex'],keep=False))
截图
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持武林网。
新闻热点
疑难解答
图片精选