首页 > 编程 > Python > 正文

python实现烟花小程序

2019-11-25 13:21:32
字体:
来源:转载
供稿:网友

本文实例为大家分享了python实现烟花小程序的具体代码,供大家参考,具体内容如下

'''FIREWORKS SIMULATION WITH TKINTER*self-containing code*to run: simply type python simple.py in your console*compatible with both Python 2 and Python 3*Dependencies: tkinter, Pillow (only for background image)*The design is based on high school physics, with some small twists only for aesthetics purpose import tkinter as tk#from tkinter import messagebox#from tkinter import PhotoImagefrom PIL import Image, ImageTkfrom time import time, sleepfrom random import choice, uniform, randintfrom math import sin, cos, radians# gravity, act as our constant g, you can experiment by changing itGRAVITY = 0.05# list of color, can choose randomly or use as a queue (FIFO)colors = ['red', 'blue', 'yellow', 'white', 'green', 'orange', 'purple', 'seagreen','indigo', 'cornflowerblue']Generic class for particlesparticles are emitted almost randomly on the sky, forming a round of circle (a star) before falling and getting removedfrom canvasAttributes:  - id: identifier of a particular particle in a star  - x, y: x,y-coordinate of a star (point of explosion)  - vx, vy: speed of particle in x, y coordinate  - total: total number of particle in a star  - age: how long has the particle last on canvas  - color: self-explantory  - cv: canvas  - lifespan: how long a particle will last on canvasclass part:  def __init__(self, cv, idx, total, explosion_speed, x=0., y=0., vx = 0., vy = 0., size=2., color = 'red', lifespan = 2, **kwargs):    self.id = idx    self.x = x    self.y = y    self.initial_speed = explosion_speed    self.vx = vx    self.vy = vy    self.total = total    self.age = 0    self.color = color    self.cv = cv    self.cid = self.cv.create_oval(      x - size, y - size, x + size,      y + size, fill=self.color)    self.lifespan = lifespan  def update(self, dt):    self.age += dt    # particle expansions    if self.alive() and self.expand():      move_x = cos(radians(self.id*360/self.total))*self.initial_speed      move_y = sin(radians(self.id*360/self.total))*self.initial_speed      self.cv.move(self.cid, move_x, move_y)      self.vx = move_x/(float(dt)*1000)    # falling down in projectile motion    elif self.alive():      move_x = cos(radians(self.id*360/self.total))      # we technically don't need to update x, y because move will do the job      self.cv.move(self.cid, self.vx + move_x, self.vy+GRAVITY*dt)      self.vy += GRAVITY*dt    # remove article if it is over the lifespan    elif self.cid is not None:      cv.delete(self.cid)      self.cid = None  # define time frame for expansion  def expand (self):    return self.age <= 1.2  # check if particle is still alive in lifespan  def alive(self):    return self.age <= self.lifespanFirework simulation loop:Recursively call to repeatedly emit new fireworks on canvasa list of list (list of stars, each of which is a list of particles)is created and drawn on canvas at every call, via update protocol inside each 'part' object def simulate(cv):  t = time()  explode_points = []  wait_time = randint(10,100)  numb_explode = randint(6,10)  # create list of list of all particles in all simultaneous explosion  for point in range(numb_explode):    objects = []    x_cordi = randint(50,550)    y_cordi = randint(50, 150)    speed = uniform (0.5, 1.5)         size = uniform (0.5,3)    color = choice(colors)    explosion_speed = uniform(0.2, 1)    total_particles = randint(10,50)    for i in range(1,total_particles):      r = part(cv, idx = i, total = total_particles, explosion_speed = explosion_speed, x = x_cordi, y = y_cordi,         vx = speed, vy = speed, color=color, size = size, lifespan = uniform(0.6,1.75))      objects.append(r)    explode_points.append(objects)  total_time = .0  # keeps undate within a timeframe of 1.8 second  while total_time < 1.8:    sleep(0.01)    tnew = time()    t, dt = tnew, tnew - t    for point in explode_points:      for item in point:        item.update(dt)    cv.update()    total_time += dt  # recursive call to continue adding new explosion on canvas  root.after(wait_time, simulate, cv)def close(*ignore):  """Stops simulation loop and closes the window."""  global root  root.quit()  if __name__ == '__main__':  root = tk.Tk()  cv = tk.Canvas(root, height=600, width=600)  # use a nice background image  image = Image.open("./image1.jpg")#背景照片路径自行选择,可以选择酷炫一点的,看起来效果会#更好  photo = ImageTk.PhotoImage(image)  cv.create_image(0, 0, image=photo, anchor='nw')  cv.pack()  root.protocol("WM_DELETE_WINDOW", close)  root.after(100, simulate, cv)  root.mainloop()

注意:这里需要安装tkinter,安装过程:

step1:

>>> import _tkinter # with underscore, and lowercase 't'

step2:

>>> import Tkinter # no underscore, uppercase 'T' for versions prior to V3.0

>>> import tkinter # no underscore, lowercase 't' for V3.0 and later

step3:

>>> Tkinter._test() # note underscore in _test and uppercase 'T' for versions prior to V3.0 

>>> tkinter._test() # note underscore in _test and lowercase 'T' for V3.0 and later

然后就可以运行了,在代码中有一个背景照片部分,路径可自行选择!我这里就不修改了。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持武林网。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表