首页 > 编程 > Python > 正文

python读取图片任意范围区域

2019-11-25 13:24:46
字体:
来源:转载
供稿:网友

使用python进行图片处理,现在需要读出图片的任意一块区域,并将其转化为一维数组,方便后续卷积操作的使用。
下面使用两种方法进行处理:

convert 函数

from PIL import Imageimport numpy as npimport matplotlib.pyplot as pltdef ImageToMatrix(filename): im = Image.open(filename)  # 读取图片 im.show()      # 显示图片 width,height = im.size print("width is :" + str(width)) print("height is :" + str(height)) im = im.convert("L")    # pic --> mat 转换,可以选择不同的模式,下面有函数源码具体说明 data = im.getdata() data = np.matrix(data,dtype='float')/255.0 new_data = np.reshape(data * 255.0,(height,width)) new_im = Image.fromarray(new_data) # 显示从矩阵数据得到的图片 new_im.show() return new_datadef MatrixToImage(data): data = data*255 new_im = Image.fromarray(data.astype(np.uint8)) return new_im''' convert(self, mode=None, matrix=None, dither=None, palette=0, colors=256)  |  Returns a converted copy of this image. For the "P" mode, this  |  method translates pixels through the palette. If mode is  |  omitted, a mode is chosen so that all information in the image  |  and the palette can be represented without a palette.  |    |  The current version supports all possible conversions between  |  "L", "RGB" and "CMYK." The **matrix** argument only supports "L"  |  and "RGB".  |    |  When translating a color image to black and white (mode "L"),  |  the library uses the ITU-R 601-2 luma transform::  |    |   L = R * 299/1000 + G * 587/1000 + B * 114/1000  |    |  The default method of converting a greyscale ("L") or "RGB"  |  image into a bilevel (mode "1") image uses Floyd-Steinberg  |  dither to approximate the original image luminosity levels. If  |  dither is NONE, all non-zero values are set to 255 (white). To  |  use other thresholds, use the :py:meth:`~PIL.Image.Image.point`  |  method.  |    |  :param mode: The requested mode. See: :ref:`concept-modes`.  |  :param matrix: An optional conversion matrix. If given, this  |   should be 4- or 12-tuple containing floating point values.  |  :param dither: Dithering method, used when converting from  |   mode "RGB" to "P" or from "RGB" or "L" to "1".  |   Available methods are NONE or FLOYDSTEINBERG (default).  |  :param palette: Palette to use when converting from mode "RGB"  |   to "P". Available palettes are WEB or ADAPTIVE.  |  :param colors: Number of colors to use for the ADAPTIVE palette.  |   Defaults to 256.  |  :rtype: :py:class:`~PIL.Image.Image`  |  :returns: An :py:class:`~PIL.Image.Image` object.'''

原图:

filepath = "./imgs/"imgdata = ImageToMatrix("./imgs/0001.jpg")print(type(imgdata))print(imgdata.shape)plt.imshow(imgdata) # 显示图片plt.axis('off')  # 不显示坐标轴plt.show()

运行结果:

mpimg 函数

import matplotlib.pyplot as plt  # plt 用于显示图片import matplotlib.image as mpimg  # mpimg 用于读取图片import numpy as npdef readPic(picname, filename): img = mpimg.imread(picname) # 此时 img 就已经是一个 np.array 了,可以对它进行任意处理 weight,height,n = img.shape  #(512, 512, 3) print("the original pic: /n" + str(img)) plt.imshow(img)     # 显示图片 plt.axis('off')     # 不显示坐标轴 plt.show() # 取reshape后的矩阵的第一维度数据,即所需要的数据列表  img_reshape = img.reshape(1,weight*height*n)[0]  print("the 1-d image data :/n "+str(img_reshape)) # 截取(300,300)区域的一小块(12*12*3),将该区域的图像数据转换为一维数组 img_cov = np.random.randint(1,2,(12,12,3))  # 这里使用np.ones()初始化数组,会出现数组元素为float类型,使用np.random.randint确保其为int型 for j in range(12):  for i in range(12):   img_cov[i][j] = img[300+i][300+j] img_reshape = img_cov.reshape(1,12*12*3)[0] print((img_cov)) print(img_reshape) # 打印该12*12*3区域的图像 plt.imshow(img_cov)  plt.axis('off')  plt.show() # 写文件 # open:以append方式打开文件,如果没找到对应的文件,则创建该名称的文件 with open(filename, 'a') as f:  f.write(str(img_reshape)) return img_reshapeif __name__ == '__main__': picname = './imgs/0001.jpg' readPic(picname, "data.py")

读出的数据(12*12*3),每个像素点以R、G、B的顺序排列,以及该区域显示为图片的效果:

参考:python 读取并显示图片的两种方法

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持武林网。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表