本文实例为大家分享了python使用插值法画出平滑曲线的具体代码,供大家参考,具体内容如下
实现所需的库
numpy、scipy、matplotlib
实现所需的方法
插值
拟合和插值的区别
简单来说,插值就是根据原有数据进行填充,最后生成的曲线一定过原有点。
拟合是通过原有数据,调整曲线系数,使得曲线与已知点集的差别(最小二乘)最小,最后生成的曲线不一定经过原有点。
代码实现
# -*- coding: utf-8 -*-# 调用模块# 调用数组模块import numpy as np# 实现插值的模块from scipy import interpolate# 画图的模块import matplotlib.pyplot as plt# 生成随机数的模块import random# random.randint(0, 10) 生成0-10范围内的一个整型数# y是一个数组里面有10个随机数,表示y轴的值y = np.array([random.randint(0, 10) for _ in range(10)])# x是一个数组,表示x轴的值x = np.array([num for num in range(10)])# 插值法之后的x轴值,表示从0到9间距为0.5的18个数xnew = np.arange(0, 9, 0.5)"""kind方法:nearest、zero、slinear、quadratic、cubic实现函数func"""func = interpolate.interp1d(x, y, kind='cubic')# 利用xnew和func函数生成ynew,xnew的数量等于ynew数量ynew = func(xnew)# 画图部分# 原图plt.plot(x, y, 'ro-')# 拟合之后的平滑曲线图plt.plot(xnew, ynew)plt.show()
注意事项/p>
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持武林网。
新闻热点
疑难解答
图片精选