首页 > 编程 > Java > 正文

Java多线程 ReentrantLock互斥锁详解

2019-11-26 08:37:07
字体:
来源:转载
供稿:网友

加锁和解锁

我们来看下ReentrantLock的基本用法

ThreadDomain35类

public class ThreadDomain35 {  private Lock lock = new ReentrantLock();  public void testMethod()  {    try    {      lock.lock();      for (int i = 0; i < 2; i++)      {        System.out.println("ThreadName = " + Thread.currentThread().getName() + ", i = " + i);      }    }    finally    {      lock.unlock();    }  }}

线程和main方法

public class MyThread35 extends Thread {  private ThreadDomain35 td;  public MyThread35(ThreadDomain35 td)  {    this.td = td;  }  public void run()  {    td.testMethod();  }  public static void main(String[] args)  {    ThreadDomain35 td = new ThreadDomain35();    MyThread35 mt0 = new MyThread35(td);    MyThread35 mt1 = new MyThread35(td);    MyThread35 mt2 = new MyThread35(td);    mt0.start();    mt1.start();    mt2.start();  }}

输出结果

ThreadName = Thread-2, i = 0ThreadName = Thread-2, i = 1ThreadName = Thread-0, i = 0ThreadName = Thread-0, i = 1ThreadName = Thread-1, i = 0ThreadName = Thread-1, i = 1

一个线程必须执行完才能执行下一个线程,说明ReentrantLock可以加锁。

ReentrantLock持有的对象监视器和synchronized不同

ThreadDomain37类,methodB用synchronized修饰

public class ThreadDomain37 {  private Lock lock = new ReentrantLock();  public void methodA()  {    try    {      lock.lock();      System.out.println("MethodA begin ThreadName = " + Thread.currentThread().getName());      Thread.sleep(5000);      System.out.println("MethodA end ThreadName = " + Thread.currentThread().getName());    }    catch (InterruptedException e)    {      e.printStackTrace();    }    finally    {      lock.unlock();    }  }  public synchronized void methodB()  {    System.out.println("MethodB begin ThreadName = " + Thread.currentThread().getName());    System.out.println("MethodB begin ThreadName = " + Thread.currentThread().getName());  }}

MyThread37_0类

public class MyThread37_0 extends Thread {  private ThreadDomain37 td;  public MyThread37_0(ThreadDomain37 td)  {    this.td = td;  }  public void run()  {    td.methodA();  }}

MyThread37_1类

public class MyThread37_1 extends Thread {  private ThreadDomain37 td;  public MyThread37_1(ThreadDomain37 td)  {    this.td = td;  }  public void run()  {    td.methodB();  }}

MyThread37_main方法

public class MyThread37_main {  public static void main(String[] args)  {    ThreadDomain37 td = new ThreadDomain37();    MyThread37_0 mt0 = new MyThread37_0(td);    MyThread37_1 mt1 = new MyThread37_1(td);    mt0.start();    mt1.start();  }}

运行结果如下

MethodA begin ThreadName = Thread-0MethodB begin ThreadName = Thread-1MethodB begin ThreadName = Thread-1MethodA end ThreadName = Thread-0

加了synchronized依然是异步执行,说明ReentrantLock和synchronized持有的对象监视器不同。ReentrantLock需要手动加锁和释放锁。

Condition

基本用法

synchronized与wait()和nitofy()/notifyAll()方法可以实现等待/唤醒模型,ReentrantLock同样可以,需要借助Condition的await()和signal/signalAll(),await()释放锁。

ThreadDomain38类

public class ThreadDomain38 {  private Lock lock = new ReentrantLock();  private Condition condition = lock.newCondition();  public void await()  {    try    {      lock.lock();      System.out.println("await时间为:" + System.currentTimeMillis());      condition.await();      System.out.println("await等待结束");    }    catch (InterruptedException e)    {      e.printStackTrace();    }    finally    {      lock.unlock();    }  }  public void signal()  {    try    {      lock.lock();      System.out.println("signal时间为:" + System.currentTimeMillis());      condition.signal();      System.out.println("signal等待结束");    }    finally    {      lock.unlock();    }  }}

MyThread38类,线程和main方法

public class MyThread38 extends Thread{  private ThreadDomain38 td;  public MyThread38(ThreadDomain38 td)  {    this.td = td;  }  public void run()  {    td.await();  }  public static void main(String[] args) throws Exception  {    ThreadDomain38 td = new ThreadDomain38();    MyThread38 mt = new MyThread38(td);    mt.start();    Thread.sleep(3000);    td.signal();  }}


运行结果如下

await时间为:1563505465346signal时间为:1563505468345signal等待结束await等待结束

可以看到,ReentrantLock和Condition实现了等待/通知模型。

一个Lock可以创建多个Condition;

notify()唤醒的线程是随机的,signal()可以有选择性地唤醒。

Condition选择 唤醒/等待

现在看一个利用Condition选择等待和唤醒的例子

ThreadDomain47类,定义add和sub方法

public class ThreadDomain47 {  private final Lock lock = new ReentrantLock();  private final Condition addCondition = lock.newCondition();  private final Condition subCondition = lock.newCondition();  private static int num = 0;  private List<String> lists = new LinkedList<String>();  public void add() {    lock.lock();    try {      while(lists.size() == 10) {//当集合已满,则"添加"线程等待        addCondition.await();      }      num++;      lists.add("add Banana" + num);      System.out.println("The Lists Size is " + lists.size());      System.out.println("The Current Thread is " + "增加线程");      System.out.println("==============================");      this.subCondition.signal();    } catch (InterruptedException e) {      e.printStackTrace();    } finally {//释放锁      lock.unlock();    }  }  public void sub() {    lock.lock();    try {      while(lists.size() == 0) {//当集合为空时,"减少"线程等待        subCondition.await();      }      String str = lists.get(0);      lists.remove(0);      System.out.println("The Token Banana is [" + str + "]");      System.out.println("The Current Thread is " + "减少线程");      System.out.println("==============================");      num--;      addCondition.signal();    } catch (InterruptedException e) {      e.printStackTrace();    } finally {      lock.unlock();    }  }}

MyThread40_0类,增加线程

public class MyThread40_0 implements Runnable {  private ThreadDomain47 task;  public MyThread40_0(ThreadDomain47 task) {    this.task = task;  }  @Override  public void run() {    task.add();  }}

MyThread40_1类,减少线程

public class MyThread40_1 implements Runnable {  private ThreadDomain47 task;  public MyThread40_1(ThreadDomain47 task) {    this.task = task;  }  @Override  public void run() {    task.sub();  }}

main方法,启动线程

public class MyThread40_main {  public static void main(String[] args) {    ThreadDomain47 task = new ThreadDomain47();    Thread t1=new Thread(new MyThread40_0(task));    Thread t3=new Thread(new MyThread40_0(task));    Thread t7=new Thread(new MyThread40_0(task));    Thread t8=new Thread(new MyThread40_0(task));    Thread t2 = new Thread(new MyThread40_1(task));    Thread t4 = new Thread(new MyThread40_1(task));    Thread t5 = new Thread(new MyThread40_1(task));    Thread t6 = new Thread(new MyThread40_1(task));    t1.start();    t2.start();    t3.start();    t4.start();    t5.start();    t6.start();    t7.start();    t8.start();  }}

输出结果如下

The Lists Size is 1The Current Thread is 增加线程==============================The Lists Size is 2The Current Thread is 增加线程==============================The Token Banana is [add Banana1]The Current Thread is 减少线程==============================The Token Banana is [add Banana2]The Current Thread is 减少线程==============================The Lists Size is 1The Current Thread is 增加线程==============================The Token Banana is [add Banana1]The Current Thread is 减少线程==============================The Lists Size is 1The Current Thread is 增加线程==============================The Token Banana is [add Banana1]The Current Thread is 减少线程==============================

可以看到,lists的数量不会增加太多,也不会减少太多。当集合满,使增加线程等待,唤醒减少线程;当集合空,使减少线程等待,唤醒增加线程。我们用wait()/notify()机制无法实现该效果,这里体现了Condition的强大之处。

ReentrantLock中的方法

公平锁和非公平锁

ReentrantLock可以指定公平锁和非公平锁,公平锁根据线程运行的顺序获取锁,非公平锁则通过抢占获得锁,不按线程运行顺序。synchronized是非公平锁。在ReentrantLock(boolean fair)构造函数传入true/false来指定公平锁/非公平锁。
看个例子

ThreadDomain39类和main方法

public class ThreadDomain39 {  private Lock lock = new ReentrantLock(true);  public void testMethod()  {    try    {      lock.lock();      System.out.println("ThreadName" + Thread.currentThread().getName() + "获得锁");    }    finally    {      lock.unlock();    }  }  public static void main(String[] args) throws Exception  {    final ThreadDomain39 td = new ThreadDomain39();    Runnable runnable = new Runnable()    {      public void run()      {        System.out.println("线程" + Thread.currentThread().getName() + "运行了");        td.testMethod();      }    };    Thread[] threads = new Thread[5];    for (int i = 0; i < 5; i++)      threads[i] = new Thread(runnable);    for (int i = 0; i < 5; i++)      threads[i].start();  }}

输出结果如下

线程Thread-0运行了ThreadNameThread-0获得锁线程Thread-1运行了线程Thread-2运行了ThreadNameThread-1获得锁线程Thread-3运行了线程Thread-4运行了ThreadNameThread-2获得锁ThreadNameThread-3获得锁ThreadNameThread-4获得锁

可以看到公平锁获得锁的顺序和线程运行的顺序相同。公平锁尽可能地让线程获取锁的顺序和线程运行顺序保持一致,再执行几次,可能不一致。

ReentrantLock构造函数传入false,输出结果如下:

线程Thread-0运行了线程Thread-2运行了线程Thread-4运行了线程Thread-3运行了ThreadNameThread-0获得锁线程Thread-1运行了ThreadNameThread-1获得锁ThreadNameThread-2获得锁ThreadNameThread-4获得锁ThreadNameThread-3获得锁

非公平锁获得锁的顺序和线程运行的顺序不同

getHoldCount()

获取当前线程调用lock()的次数,一般debug使用。

看个例子

public class ThreadDomain40 {  private ReentrantLock lock = new ReentrantLock();  public void testMethod1()  {    try    {      lock.lock();      System.out.println("testMethod1 getHoldCount = " + lock.getHoldCount());      testMethod2();    }    finally    {      lock.unlock();    }  }  public void testMethod2()  {    try    {      lock.lock();      System.out.println("testMethod2 getHoldCount = " + lock.getHoldCount());    }    finally    {      lock.unlock();    }  }  public static void main(String[] args)  {    ThreadDomain40 td = new ThreadDomain40();    td.testMethod1();  }}

输出结果如下

testMethod1 getHoldCount = 1testMethod2 getHoldCount = 2

可以看到,testMethod1()被调用了一次,testMethod2()被调用了两次,ReentrantLock和synchronized一样,锁都是可重入的。

getQueueLength()和isFair()

getQueueLength()获取等待的线程数量,isFair()判断是否是公平锁。

ThreadDomain41类和main方法,Thread.sleep(2000)使第一个线程之后的线程都来不及启动,Thread.sleep(Integer.MAX_VALUE)使线程无法unlock()。

public class ThreadDomain41 {  public ReentrantLock lock = new ReentrantLock();  public void testMethod()  {    try    {      lock.lock();      System.out.println("ThreadName = " + Thread.currentThread().getName() + "进入方法!");      System.out.println("是否公平锁?" + lock.isFair());      Thread.sleep(Integer.MAX_VALUE);    }    catch (InterruptedException e)    {      e.printStackTrace();    }    finally    {      lock.unlock();    }  }  public static void main(String[] args) throws InterruptedException  {    final ThreadDomain41 td = new ThreadDomain41();    Runnable runnable = new Runnable()    {      public void run()      {        td.testMethod();      }    };    Thread[] threads = new Thread[10];    for (int i = 0; i < 10; i++)      threads[i] = new Thread(runnable);    for (int i = 0; i < 10; i++)      threads[i].start();    Thread.sleep(2000);    System.out.println("有" + td.lock.getQueueLength() + "个线程正在等待!");  }}

输出结果如下

ThreadName = Thread-1进入方法!是否公平锁?false有9个线程正在等待!

ReentrantLock默认是非公平锁,只有一个线程lock(),9个线程在等待。

hasQueuedThread()和hasQueuedThreads()

hasQueuedThread(Thread thread)查询指定线程是否在等待锁,hasQueuedThreads()查询是否有线程在等待锁。
看个例子

ThreadDomain41类和main方法,和上面例子类似,Thread.sleep(Integer.MAX_VALUE); 让线程不释放锁,Thread.sleep(2000);让第一个线程之后的线程都无法启动。

public class ThreadDomain42 extends ReentrantLock {  public void waitMethod()  {    try    {      lock();      Thread.sleep(Integer.MAX_VALUE);    }    catch (InterruptedException e)    {      e.printStackTrace();    }    finally    {      unlock();    }  }  public static void main(String[] args) throws InterruptedException  {    final ThreadDomain42 td = new ThreadDomain42();    Runnable runnable = new Runnable()    {      public void run()      {        td.waitMethod();      }    };    Thread t0 = new Thread(runnable);    t0.start();    Thread.sleep(500);    Thread t1 = new Thread(runnable);    t1.start();    Thread.sleep(500);    Thread t2 = new Thread(runnable);    t2.start();    Thread.sleep(500);    System.out.println("t0 is waiting?" + td.hasQueuedThread(t0));    System.out.println("t1 is waiting?" + td.hasQueuedThread(t1));    System.out.println("t2 is waiting?" + td.hasQueuedThread(t2));    System.out.println("Is any thread waiting?" + td.hasQueuedThreads());  }}

输出结果如下

t0 is waiting?falset1 is waiting?truet2 is waiting?trueIs any thread waiting?true

t0线程获得了锁,t0没有释放锁,导致t1,t2等待锁。

isHeldByCurrentThread()和isLocked()

isHeldByCurrentThread()判断锁是否由当前线程持有,isLocked()判断锁是否由任意线程持有。
请看示例

ThreadDomain43类和main方法

public class ThreadDomain43 extends ReentrantLock {  public void testMethod()  {    try    {      lock();      System.out.println(Thread.currentThread().getName() + "线程持有了锁!");      System.out.println(Thread.currentThread().getName() + "线程是否持有锁?" +          isHeldByCurrentThread());      System.out.println("是否任意线程持有了锁?" + isLocked());    } finally    {      unlock();    }  }  public void testHoldLock()  {    System.out.println(Thread.currentThread().getName() + "线程是否持有锁?" +        isHeldByCurrentThread());    System.out.println("是否任意线程持有了锁?" + isLocked());  }  public static void main(String[] args)  {    final ThreadDomain43 td = new ThreadDomain43();    Runnable runnable0 = new Runnable()    {      public void run()      {        td.testMethod();      }    };    Runnable runnable1 = new Runnable()    {      public void run()      {        td.testHoldLock();      }    };    Thread t0 = new Thread(runnable0);    Thread t1 = new Thread(runnable1);    t0.start();    t1.start();  }}

输出结果如下

Thread-0线程持有了锁!Thread-1线程是否持有锁?falseThread-0线程是否持有锁?true是否任意线程持有了锁?true是否任意线程持有了锁?true

Thread-0线程testMethod方法持有锁,Thread-1线程testHoldLock方法没有lock操作,所以不持有锁。

tryLock()和tryLock(long timeout, TimeUnit unit)

tryLock()有加锁的功能,获得了锁且锁没有被另外一个线程持有,此时返回true,否则返回false,可以有效避免死锁。tryLock(long timeout, TimeUnit unit)表示在给定的时间内获得了锁,锁没有被其他线程持有,且不处于中断状态。返回true,否则返回false;

看个例子

public class MyThread39 {  public static void main(String[] args) {    System.out.println("开始");    final Lock lock = new ReentrantLock();    new Thread() {      @Override      public void run() {        String tName = Thread.currentThread().getName();        if (lock.tryLock()) {          System.out.println(tName + "获取到锁!");        } else {          System.out.println(tName + "获取不到锁!");          return;        }        try {          for (int i = 0; i < 5; i++) {            System.out.println(tName + ":" + i);          }          Thread.sleep(5000);        } catch (Exception e) {          System.out.println(tName + "出错了!");        } finally {          System.out.println(tName + "释放锁!");          lock.unlock();        }      }    }.start();    new Thread() {      @Override      public void run() {        String tName = Thread.currentThread().getName();        try {          if (lock.tryLock(1,TimeUnit.SECONDS)) {            System.out.println(tName + "获取到锁!");          } else {            System.out.println(tName + "获取不到锁!");            return;          }        } catch (InterruptedException e) {          e.printStackTrace();        }        try {          for (int i = 0; i < 5; i++) {            System.out.println(tName + ":" + i);          }        } catch (Exception e) {          System.out.println(tName + "出错");        } finally {          System.out.println(tName + "释放锁!");          lock.unlock();        }      }    }.start();    System.out.println("结束");  }}

输出结果如下

开始Thread-0获取到锁!Thread-0:0Thread-0:1Thread-0:2Thread-0:3Thread-0:4结束Thread-1获取不到锁!Thread-0释放锁!

Thread-0先获得了锁,且sleep了5秒,导致Thread-1获取不到锁,我们给Thread-1的tryLock设置1秒,一秒内获取不到锁就会返回false。

如果Thread.sleep(0),那么Thread-0和Thread-1都可以获得锁,园友可以自己试下。

synchronized和ReentrantLock的比较

1.synchronized关键字是语法层面的实现,ReentrantLock要手动lock()和unlock();

2.synchronized是不公平锁,ReentrantLock可以指定是公平锁还是非公平锁;

3.synchronized等待/唤醒机制是随机的,ReentrantLock借助Condition的等待/唤醒机制可以自行选择等待/唤醒;

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持武林网。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表