首页 > 编程 > Java > 正文

Spark学习笔记Spark Streaming的使用

2019-11-26 08:54:54
字体:
来源:转载
供稿:网友

1. Spark Streaming

  • Spark Streaming是一个基于Spark Core之上的实时计算框架,可以从很多数据源消费数据并对数据进行处理
  • Spark Streaing中有一个最基本的抽象叫DStream(代理),本质上就是一系列连续的RDD,DStream其实就是对RDD的封装
  • DStream可以认为是一个RDD的工厂,该DStream里面生产都是相同业务逻辑的RDD,只不过是RDD里面要读取数据的不相同
  • 在一个批次的处理时间间隔里, DStream只产生一个RDD
  • DStream就相当于一个"模板", 我们可以根据这个"模板"来处理一段时间间隔之内产生的这个rdd,以此为依据来构建rdd的DAG

2. 当下比较流行的实时计算引擎

吞吐量 编程语言 处理速度 生态

Storm 较低 clojure 非常快(亚秒) 阿里(JStorm)

Flink 较高 scala 较快(亚秒) 国内使用较少

Spark Streaming 非常高 scala 快(毫秒) 完善的生态圈

3. Spark Streaming处理网络数据

//创建StreamingContext 至少要有两个线程 一个线程用于接收数据 一个线程用于处理数据val conf = new SparkConf().setAppName("Ops1").setMaster("local[2]")val ssc = new StreamingContext(conf, Milliseconds(3000))val receiverDS: ReceiverInputDStream[String] = ssc.socketTextStream("uplooking01", 44444)val pairRetDS: DStream[(String, Int)] = receiverDS.flatMap(_.split(",")).map((_, 1)).reduceByKey(_ + _)pairRetDS.print()//开启流计算ssc.start()//优雅的关闭ssc.awaitTermination()

4. Spark Streaming接收数据的两种方式(Kafka)

Receiver

  • 偏移量是由zookeeper来维护的
  • 使用的是Kafka高级的API(消费者的API)
  • 编程简单
  • 效率低(为了保证数据的安全性,会开启WAL)
  • kafka0.10的版本中已经彻底弃用Receiver了
  • 生产环境一般不会使用这种方式

Direct

  • 偏移量是有我们来手动维护
  • 效率高(我们直接把spark streaming接入到kafka的分区中了)
  • 编程比较复杂
  • 生产环境一般使用这种方式

5. Spark Streaming整合Kafka

基于Receiver的方式整合kafka(生产环境不建议使用,在0.10中已经移除了)

//创建StreamingContext 至少要有两个线程 一个线程用于接收数据 一个线程用于处理数据val conf = new SparkConf().setAppName("Ops1").setMaster("local[2]")val ssc = new StreamingContext(conf, Milliseconds(3000))val zkQuorum = "uplooking03:2181,uplooking04:2181,uplooking05:2181"val groupId = "myid"val topics = Map("hadoop" -> 3)val receiverDS: ReceiverInputDStream[(String, String)] = KafkaUtils.createStream(ssc, zkQuorum, groupId, topics)receiverDS.flatMap(_._2.split(" ")).map((_,1)).reduceByKey(_+_).print()ssc.start()ssc.awaitTermination()

基于Direct的方式(生产环境使用)

//创建StreamingContext 至少要有两个线程 一个线程用于接收数据 一个线程用于处理数据val conf = new SparkConf().setAppName("Ops1").setMaster("local[2]")val ssc = new StreamingContext(conf, Milliseconds(3000))val kafkaParams = Map("metadata.broker.list" -> "uplooking03:9092,uplooking04:9092,uplooking05:9092")val topics = Set("hadoop")val inputDS: InputDStream[(String, String)] = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topics)inputDS.flatMap(_._2.split(" ")).map((_, 1)).reduceByKey(_ + _).print()ssc.start()ssc.awaitTermination()

6. 实时流计算的架构

1. 生成日志(模拟用户访问web应用的日志)

public class GenerateAccessLog {  public static void main(String[] args) throws IOException, InterruptedException {    //准备数据    int[] ips = {123, 18, 123, 112, 181, 16, 172, 183, 190, 191, 196, 120};    String[] requesTypes = {"GET", "POST"};    String[] cursors = {"/vip/112", "/vip/113", "/vip/114", "/vip/115", "/vip/116", "/vip/117", "/vip/118", "/vip/119", "/vip/120", "/vip/121", "/free/210", "/free/211", "/free/212", "/free/213", "/free/214", "/company/312", "/company/313", "/company/314", "/company/315"};    String[] courseNames = {"大数据", "python", "java", "c++", "c", "scala", "android", "spark", "hadoop", "redis"};    String[] references = {"www.baidu.com/", "www.sougou.com/", "www.sou.com/", "www.google.com"};    FileWriter fw = new FileWriter(args[0]);    PrintWriter printWriter = new PrintWriter(fw);    while (true) {      //      Thread.sleep(1000);      //产生字段      String date = new Date().toLocaleString();      String method = requesTypes[getRandomNum(0, requesTypes.length)];      String url = "/cursor" + cursors[getRandomNum(0, cursors.length)];      String HTTPVERSION = "HTTP/1.1";      String ip = ips[getRandomNum(0, ips.length)] + "." + ips[getRandomNum(0, ips.length)] + "." + ips[getRandomNum(0, ips.length)] + "." + ips[getRandomNum(0, ips.length)];      String reference = references[getRandomNum(0, references.length)];      String rowLog = date + " " + method + " " + url + " " + HTTPVERSION + " " + ip + " " + reference;      printWriter.println(rowLog);      printWriter.flush();    }  }  //[start,end)  public static int getRandomNum(int start, int end) {    int i = new Random().nextInt(end - start) + start;    return i;  }}

2. flume使用avro采集web应用服务器的日志数据

采集命令执行的结果到avro中

# The configuration file needs to define the sources, # the channels and the sinks.# Sources, channels and sinks are defined per agent, # in this case called 'agent'f1.sources = r1f1.channels = c1f1.sinks = k1#define sourcesf1.sources.r1.type = execf1.sources.r1.command =tail -F /logs/access.log#define channelsf1.channels.c1.type = memoryf1.channels.c1.capacity = 1000f1.channels.c1.transactionCapacity = 100#define sink 采集日志到uplooking03f1.sinks.k1.type = avrof1.sinks.k1.hostname = uplooking03f1.sinks.k1.port = 44444#bind sources and sink to channel f1.sources.r1.channels = c1f1.sinks.k1.channel = c1从avro采集到控制台# The configuration file needs to define the sources, # the channels and the sinks.# Sources, channels and sinks are defined per agent, # in this case called 'agent'f2.sources = r2f2.channels = c2f2.sinks = k2#define sourcesf2.sources.r2.type = avrof2.sources.r2.bind = uplooking03f2.sources.r2.port = 44444#define channelsf2.channels.c2.type = memoryf2.channels.c2.capacity = 1000f2.channels.c2.transactionCapacity = 100#define sinkf2.sinks.k2.type = logger#bind sources and sink to channel f2.sources.r2.channels = c2f2.sinks.k2.channel = c2从avro采集到kafka中# The configuration file needs to define the sources, # the channels and the sinks.# Sources, channels and sinks are defined per agent, # in this case called 'agent'f2.sources = r2f2.channels = c2f2.sinks = k2#define sourcesf2.sources.r2.type = avrof2.sources.r2.bind = uplooking03f2.sources.r2.port = 44444#define channelsf2.channels.c2.type = memoryf2.channels.c2.capacity = 1000f2.channels.c2.transactionCapacity = 100#define sinkf2.sinks.k2.type = org.apache.flume.sink.kafka.KafkaSinkf2.sinks.k2.topic = hadoopf2.sinks.k2.brokerList = uplooking03:9092,uplooking04:9092,uplooking05:9092f2.sinks.k2.requiredAcks = 1

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持武林网。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表