首页 > 编程 > Java > 正文

Java实现高效随机数算法的示例代码

2019-11-26 09:16:12
字体:
来源:转载
供稿:网友

前言

事情起源于一位网友分享了一个有趣的面试题:

生成由六位数字组成的ID,要求随机数字,不排重,不可自增,且数字不重复。ID总数为几十万。

初次解答

我一开始想到的办法是

  • 生成一个足够大的ID池(其实就是需要多少就生成多少)
  • 对ID池中的数字进行随机排序
  • 依次消费ID池中的数字

可惜这个方法十分浪费空间,且性能很差。

初遇梅森旋转算法

后面咨询了网友后得知了一个高效的随机数算法:梅森旋转(Mersenne Twister/MT)。通过搜索资料得知:

梅森旋转算法(Mersenne twister)是一个伪随机数发生算法。由松本真和西村拓士在1997年开发,基于有限二进制字段上的矩阵线性递归。可以快速产生高质量的伪随机数,修正了古典随机数发生算法的很多缺陷。
最为广泛使用Mersenne Twister的一种变体是MT19937,可以产生32位整数序列。

PS:此算法依然无法完美解决面试题,但是也算学到了新知识

MT19937算法实现

后面通过Google,找到了一个高效的MT19937的Java版本代码。原代码链接为http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/VERSIONS/JAVA/MTRandom.java

import java.util.Random;/** * MT19937的Java实现 */public class MTRandom extends Random {    // Constants used in the original C implementation  private final static int UPPER_MASK = 0x80000000;  private final static int LOWER_MASK = 0x7fffffff;  private final static int N = 624;  private final static int M = 397;  private final static int MAGIC[] = { 0x0, 0x9908b0df };  private final static int MAGIC_FACTOR1 = 1812433253;  private final static int MAGIC_FACTOR2 = 1664525;  private final static int MAGIC_FACTOR3 = 1566083941;  private final static int MAGIC_MASK1  = 0x9d2c5680;  private final static int MAGIC_MASK2  = 0xefc60000;  private final static int MAGIC_SEED  = 19650218;  private final static long DEFAULT_SEED = 5489L;  // Internal state  private transient int[] mt;  private transient int mti;  private transient boolean compat = false;  // Temporary buffer used during setSeed(long)  private transient int[] ibuf;  /**   * The default constructor for an instance of MTRandom. This invokes   * the no-argument constructor for java.util.Random which will result   * in the class being initialised with a seed value obtained by calling   * System.currentTimeMillis().   */  public MTRandom() { }  /**   * This version of the constructor can be used to implement identical   * behaviour to the original C code version of this algorithm including   * exactly replicating the case where the seed value had not been set   * prior to calling genrand_int32.   * <p>   * If the compatibility flag is set to true, then the algorithm will be   * seeded with the same default value as was used in the original C   * code. Furthermore the setSeed() method, which must take a 64 bit   * long value, will be limited to using only the lower 32 bits of the   * seed to facilitate seamless migration of existing C code into Java   * where identical behaviour is required.   * <p>   * Whilst useful for ensuring backwards compatibility, it is advised   * that this feature not be used unless specifically required, due to   * the reduction in strength of the seed value.   *   * @param compatible Compatibility flag for replicating original   * behaviour.   */  public MTRandom(boolean compatible) {    super(0L);    compat = compatible;    setSeed(compat?DEFAULT_SEED:System.currentTimeMillis());  }  /**   * This version of the constructor simply initialises the class with   * the given 64 bit seed value. For a better random number sequence   * this seed value should contain as much entropy as possible.   *   * @param seed The seed value with which to initialise this class.   */  public MTRandom(long seed) {    super(seed);  }  /**   * This version of the constructor initialises the class with the   * given byte array. All the data will be used to initialise this   * instance.   *   * @param buf The non-empty byte array of seed information.   * @throws NullPointerException if the buffer is null.   * @throws IllegalArgumentException if the buffer has zero length.   */  public MTRandom(byte[] buf) {    super(0L);    setSeed(buf);  }  /**   * This version of the constructor initialises the class with the   * given integer array. All the data will be used to initialise   * this instance.   *   * @param buf The non-empty integer array of seed information.   * @throws NullPointerException if the buffer is null.   * @throws IllegalArgumentException if the buffer has zero length.   */  public MTRandom(int[] buf) {    super(0L);    setSeed(buf);  }  // Initializes mt[N] with a simple integer seed. This method is  // required as part of the Mersenne Twister algorithm but need  // not be made public.  private final void setSeed(int seed) {    // Annoying runtime check for initialisation of internal data    // caused by java.util.Random invoking setSeed() during init.    // This is unavoidable because no fields in our instance will    // have been initialised at this point, not even if the code    // were placed at the declaration of the member variable.    if (mt == null) mt = new int[N];    // ---- Begin Mersenne Twister Algorithm ----    mt[0] = seed;    for (mti = 1; mti < N; mti++) {      mt[mti] = (MAGIC_FACTOR1 * (mt[mti-1] ^ (mt[mti-1] >>> 30)) + mti);    }    // ---- End Mersenne Twister Algorithm ----  }  /**   * This method resets the state of this instance using the 64   * bits of seed data provided. Note that if the same seed data   * is passed to two different instances of MTRandom (both of   * which share the same compatibility state) then the sequence   * of numbers generated by both instances will be identical.   * <p>   * If this instance was initialised in 'compatibility' mode then   * this method will only use the lower 32 bits of any seed value   * passed in and will match the behaviour of the original C code   * exactly with respect to state initialisation.   *   * @param seed The 64 bit value used to initialise the random   * number generator state.   */  public final synchronized void setSeed(long seed) {    if (compat) {      setSeed((int)seed);    } else {      // Annoying runtime check for initialisation of internal data      // caused by java.util.Random invoking setSeed() during init.      // This is unavoidable because no fields in our instance will      // have been initialised at this point, not even if the code      // were placed at the declaration of the member variable.      if (ibuf == null) ibuf = new int[2];      ibuf[0] = (int)seed;      ibuf[1] = (int)(seed >>> 32);      setSeed(ibuf);    }  }  /**   * This method resets the state of this instance using the byte   * array of seed data provided. Note that calling this method   * is equivalent to calling "setSeed(pack(buf))" and in particular   * will result in a new integer array being generated during the   * call. If you wish to retain this seed data to allow the pseudo   * random sequence to be restarted then it would be more efficient   * to use the "pack()" method to convert it into an integer array   * first and then use that to re-seed the instance. The behaviour   * of the class will be the same in both cases but it will be more   * efficient.   *   * @param buf The non-empty byte array of seed information.   * @throws NullPointerException if the buffer is null.   * @throws IllegalArgumentException if the buffer has zero length.   */  public final void setSeed(byte[] buf) {    setSeed(pack(buf));  }  /**   * This method resets the state of this instance using the integer   * array of seed data provided. This is the canonical way of   * resetting the pseudo random number sequence.   *   * @param buf The non-empty integer array of seed information.   * @throws NullPointerException if the buffer is null.   * @throws IllegalArgumentException if the buffer has zero length.   */  public final synchronized void setSeed(int[] buf) {    int length = buf.length;    if (length == 0) throw new IllegalArgumentException("Seed buffer may not be empty");    // ---- Begin Mersenne Twister Algorithm ----    int i = 1, j = 0, k = (N > length ? N : length);    setSeed(MAGIC_SEED);    for (; k > 0; k--) {      mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >>> 30)) * MAGIC_FACTOR2)) + buf[j] + j;      i++; j++;      if (i >= N) { mt[0] = mt[N-1]; i = 1; }      if (j >= length) j = 0;    }    for (k = N-1; k > 0; k--) {      mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >>> 30)) * MAGIC_FACTOR3)) - i;      i++;      if (i >= N) { mt[0] = mt[N-1]; i = 1; }    }    mt[0] = UPPER_MASK; // MSB is 1; assuring non-zero initial array    // ---- End Mersenne Twister Algorithm ----  }  /**   * This method forms the basis for generating a pseudo random number   * sequence from this class. If given a value of 32, this method   * behaves identically to the genrand_int32 function in the original   * C code and ensures that using the standard nextInt() function   * (inherited from Random) we are able to replicate behaviour exactly.   * <p>   * Note that where the number of bits requested is not equal to 32   * then bits will simply be masked out from the top of the returned   * integer value. That is to say that:   * <pre>   * mt.setSeed(12345);   * int foo = mt.nextInt(16) + (mt.nextInt(16) << 16);</pre>   * will not give the same result as   * <pre>   * mt.setSeed(12345);   * int foo = mt.nextInt(32);</pre>   *   * @param bits The number of significant bits desired in the output.   * @return The next value in the pseudo random sequence with the   * specified number of bits in the lower part of the integer.   */  protected final synchronized int next(int bits) {    // ---- Begin Mersenne Twister Algorithm ----    int y, kk;    if (mti >= N) {       // generate N words at one time      // In the original C implementation, mti is checked here      // to determine if initialisation has occurred; if not      // it initialises this instance with DEFAULT_SEED (5489).      // This is no longer necessary as initialisation of the      // Java instance must result in initialisation occurring      // Use the constructor MTRandom(true) to enable backwards      // compatible behaviour.      for (kk = 0; kk < N-M; kk++) {        y = (mt[kk] & UPPER_MASK) | (mt[kk+1] & LOWER_MASK);        mt[kk] = mt[kk+M] ^ (y >>> 1) ^ MAGIC[y & 0x1];      }      for (;kk < N-1; kk++) {        y = (mt[kk] & UPPER_MASK) | (mt[kk+1] & LOWER_MASK);        mt[kk] = mt[kk+(M-N)] ^ (y >>> 1) ^ MAGIC[y & 0x1];      }      y = (mt[N-1] & UPPER_MASK) | (mt[0] & LOWER_MASK);      mt[N-1] = mt[M-1] ^ (y >>> 1) ^ MAGIC[y & 0x1];      mti = 0;    }    y = mt[mti++];    // Tempering    y ^= (y >>> 11);    y ^= (y << 7) & MAGIC_MASK1;    y ^= (y << 15) & MAGIC_MASK2;    y ^= (y >>> 18);    // ---- End Mersenne Twister Algorithm ----    return (y >>> (32-bits));  }  // This is a fairly obscure little code section to pack a  // byte[] into an int[] in little endian ordering.  /**   * This simply utility method can be used in cases where a byte   * array of seed data is to be used to repeatedly re-seed the   * random number sequence. By packing the byte array into an   * integer array first, using this method, and then invoking   * setSeed() with that; it removes the need to re-pack the byte   * array each time setSeed() is called.   * <p>   * If the length of the byte array is not a multiple of 4 then   * it is implicitly padded with zeros as necessary. For example:   * <pre>  byte[] { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06 }</pre>   * becomes   * <pre>  int[] { 0x04030201, 0x00000605 }</pre>   * <p>   * Note that this method will not complain if the given byte array   * is empty and will produce an empty integer array, but the   * setSeed() method will throw an exception if the empty integer   * array is passed to it.   *   * @param buf The non-null byte array to be packed.   * @return A non-null integer array of the packed bytes.   * @throws NullPointerException if the given byte array is null.   */  public static int[] pack(byte[] buf) {    int k, blen = buf.length, ilen = ((buf.length+3) >>> 2);    int[] ibuf = new int[ilen];    for (int n = 0; n < ilen; n++) {      int m = (n+1) << 2;      if (m > blen) m = blen;      for (k = buf[--m]&0xff; (m & 0x3) != 0; k = (k << 8) | buf[--m]&0xff);      ibuf[n] = k;    }    return ibuf;  }}

测试

测试代码

    // MT19937的Java实现    MTRandom mtRandom=new MTRandom();    Map<Integer,Integer> map=new HashMap<>();    //循环次数    int times=1000000;    long startTime=System.currentTimeMillis();    for(int i=0;i<times;i++){      //使用Map去重      map.put(mtRandom.next(32),0);    }    //打印循环次数    System.out.println("times:"+times);    //打印Map的个数    System.out.println("num:"+map.size());    //打印非重复比率    System.out.println("proportion:"+map.size()/(double)times);    //花费的时间(单位为毫秒)    System.out.println("time:"+(System.currentTimeMillis()-startTime));

测试结果

times:1000000
num:999886
proportion:0.999886
time:374

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持武林网。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表