首页 > 编程 > Java > 正文

Java源码解析之可重入锁ReentrantLock

2019-11-26 09:22:15
字体:
来源:转载
供稿:网友

本文基于jdk1.8进行分析。

ReentrantLock是一个可重入锁,在ConcurrentHashMap中使用了ReentrantLock。

首先看一下源码中对ReentrantLock的介绍。如下图。ReentrantLock是一个可重入的排他锁,它和synchronized的方法和代码有着相同的行为和语义,但有更多的功能。ReentrantLock是被最后一个成功lock锁并且还没有unlock的线程拥有着。如果锁没有被别的线程拥有,那么一个线程调用lock方法,就会成功获取锁并返回。如果当前线程已经拥有该锁,那么lock方法会立刻返回。这个可以通过isHeldByCurrentThread方法和getHoldCount方法进行验证。除了这部分介绍外,类前面的javadoc文档很长,就不在这里全部展开。随着后面介绍源码,会一一涉及到。

/** * A reentrant mutual exclusion {@link Lock} with the same basic * behavior and semantics as the implicit monitor lock accessed using * {@code synchronized} methods and statements, but with extended * capabilities. * <p>A {@code ReentrantLock} is <em>owned</em> by the thread last * successfully locking, but not yet unlocking it. A thread invoking * {@code lock} will return, successfully acquiring the lock, when * the lock is not owned by another thread. The method will return * immediately if the current thread already owns the lock. This can * be checked using methods {@link #isHeldByCurrentThread}, and {@link * #getHoldCount}.

首先看一下成员变量,如下图。ReentrantLock只有一个成员变量sync,即同步器,这个同步器提供所有的机制。Sync是AbstractQueuedSynchronizer的子类,同时,Sync有2个子类,NonfairSync和FairSync,分别是非公平锁和公平锁。Sync,NonfaireSync和FairSync的具体实现后面再讲。

  /** Synchronizer providing all implementation mechanics **/  private final Sync sync;

下面看一下构造函数。如下图。可以看到,ReentrantLock默认是非公平锁,它可以通过参数,指定初始化为公平锁或非公平锁。

  /**   * Creates an instance of {@code ReentrantLock}.   * This is equivalent to using {@code ReentrantLock(false)}.   **/  public ReentrantLock() {    sync = new NonfairSync();  }  /**   * Creates an instance of {@code ReentrantLock} with the   * given fairness policy.   * @param fair {@code true} if this lock should use a fair ordering policy   **/  public ReentrantLock(boolean fair) {    sync = fair ? new FairSync() : new NonfairSync();  }

下面看一下ReentrantLock的主要方法。首先是lock方法。如下图。lock方法的实现很简单,就是调用Sync的lock方法。而Sync的lock方法是个抽象的,具体实现在NonfairSync和FairSync中。这里我们先不展开讲,而是先读一下lock方法的注释,看看它的作用。lock方法的作用是获取该锁。分为3种情况。

1,如果锁没有被别的线程占有,那么当前线程就可以获取到锁并立刻返回,并把锁计数设置为1。

2,如果当前线程已经占有该锁了,那么就会把锁计数加1,立刻返回。

3,如果锁被另一个线程占有了,那么当前线程就无法再被线程调度,并且开始睡眠,直到获取到锁,在获取到到锁时,会把锁计数设置为1。

lockInterruptibly方法与lock功能类似,但lockInterruptibly方法在等待的过程中,可以响应中断。

  /**   * Acquires the lock.   * <p>Acquires the lock if it is not held by another thread and returns   * immediately, setting the lock hold count to one.   * <p>If the current thread already holds the lock then the hold   * count is incremented by one and the method returns immediately.   * <p>If the lock is held by another thread then the   * current thread becomes disabled for thread scheduling   * purposes and lies dormant until the lock has been acquired,   * at which time the lock hold count is set to one.   **/  public void lock() {    sync.lock();  }  public void lockInterruptibly() throws InterruptedException {    sync.acquireInterruptibly(1);  }

下面,详细看一下非公平锁和公平锁中对lock函数的实现。如下图。下图同时列出了公平锁和非公平锁中lock的实现逻辑。从注释和代码逻辑中,都可以看出,非公平锁进行lock时,先尝试立刻闯入(抢占),如果成功,则获取到锁,如果失败,再执行通常的获取锁的行为,即acquire(1)。

    /**     * 非公平锁中的lock     * Performs lock. Try immediate barge, backing up to normal     * acquire on failure.     **/    final void lock() {      if (compareAndSetState(0, 1))        setExclusiveOwnerThread(Thread.currentThread());      else        acquire(1);    }    //公平锁中的lock    final void lock() {      acquire(1);    }

那么,我们首先了解下,非公平锁“尝试立刻闯入”,究竟做了什么。稍后再继续讲解通常的获取锁的行为。下图是立即闯入行为compareAndSetState(0, 1)的实现。从compareAndSetState函数的注释中,可以知道,如果同步状态值与期望值相等,那么就把它的值设置为updated值。否则同步状态值与期望值不相等,则返回false。这个操作和volatile有着相同的内存语义,也就是说,这个操作对其他线程是可见的。compareAndSetState函数注释里描述的功能,是通过unsafe.compareAndSwapInt方法实现的,而unsafe.compareAndSwapInt是一个native方法,是用c++实现的。那么继续追问,c++底层是怎么实现的?C++底层是通过CAS指令来实现的。什么是CAS指令呢?来自维基百科的解释是,CAS,比较和交换,Compare and Swap,是用用于实现多线程原子同步的指令。它将内存位置的内容和给定值比较,只有在相同的情况下,将该内存的值设置为新的给定值。这个操作是原子操作。那么继续追问,CAS指令的原子性,是如何实现的呢?我们都知道指令时CPU来执行的,在多CPU系统中,内存是共享的,内存和多个cpu都挂在总线上,当一个CPU执行CAS指令时,它会先将总线LOCK位点设置为高电平。如果别的CPU也要执行CAS执行,它会发现总线LOCK位点已经是高电平了,则无法执行CAS执行。CPU通过LOCK保证了指令的原子执行。

现在来看一下非公平锁的lock行为,compareAndSetState(0, 1),它期望锁状态为0,即没有别的线程占用,并把新状态设置为1,即标记为占用状态。如果成功,则非公平锁成功抢到锁,之后setExclusiveOwnerThread,把自己设置为排他线程。非公平锁这小子太坏了。如果抢占失败,则执行与公平锁相同的操作。

  /**   * Atomically sets synchronization state to the given updated   * value if the current state value equals the expected value.   * This operation has memory semantics of a {@code volatile} read   * and write.   * @param expect the expected value   * @param update the new value   * @return {@code true} if successful. False return indicates that the actual   *     value was not equal to the expected value.   **/  protected final boolean compareAndSetState(int expect, int update) {    // See below for intrinsics setup to support this    return unsafe.compareAndSwapInt(this, stateOffset, expect, update);  }  public final native boolean compareAndSwapInt(Object var1, long var2, int var4, int var5);

下面看一下公平锁获取锁时的行为。如下图。这部分的逻辑有些多,请阅读代码中的注释进行理解。

  /**   * 公平锁的lock   **/  final void lock() {    acquire(1);  }  /**   * Acquires in exclusive mode, ignoring interrupts. Implemented   * by invoking at least once {@link #tryAcquire},   * returning on success. Otherwise the thread is queued, possibly   * repeatedly blocking and unblocking, invoking {@link   * #tryAcquire} until success. This method can be used   * to implement method {@link Lock#lock}.   * @param arg the acquire argument. This value is conveyed to   *    {@link #tryAcquire} but is otherwise uninterpreted and   *    can represent anything you like.   **/  public final void acquire(int arg) {    /**     * acquire首先进行tryAcquire()操作。如果tryAcquire()成功时则获取到锁,即刻返回。     * 如果tryAcquire()false时,会执行acquireQueued(addWaiter(Node.EXCLUSIVE), arg)     * 操作。如果acquireQueued(addWaiter(Node.EXCLUSIVE), arg)true时,则当前线程中断自己。     * 如果acquireQueued(addWaiter(Node.EXCLUSIVE), arg)false,则返回。     * 其中tryAcquire()操作在NonfairSync中和FairSync中实现又有所区别。     **/    if (!tryAcquire(arg) &&        acquireQueued(addWaiter(Node.EXCLUSIVE), arg))      selfInterrupt();  }  /**   * NonfairSync中的tryAcquire。   * @param acquires   * @return   **/  protected final boolean tryAcquire(int acquires) {    return nonfairTryAcquire(acquires);  }  /**   * Performs non-fair tryLock. tryAcquire is implemented in   * subclasses, but both need nonfair try for trylock method.   **/  final boolean nonfairTryAcquire(int acquires) {    final Thread current = Thread.currentThread();    //首先获取当前同步状态值    int c = getState();    if (c == 0) {      //c为0,表示目前没有线程占用锁。没有线程占用锁时,当前线程尝试抢锁,如果抢锁成功,则返回true。      if (compareAndSetState(0, acquires)) {        setExclusiveOwnerThread(current);        return true;      }    }    else if (current == getExclusiveOwnerThread()) {      //c不等于0时表示锁被线程占用。如果是当前线程占用了,则将锁计数加上acquires,并返回true。      int nextc = c + acquires;      if (nextc < 0) // overflow        throw new Error("Maximum lock count exceeded");      setState(nextc);      return true;    }    //以上情况都不是时,返回false,表示非公平抢锁失败。    return false;  }  /**   * Fair version of tryAcquire. Don't grant access unless   * recursive call or no waiters or is first.   * 这个是公平版本的tryAcquire   **/  protected final boolean tryAcquire(int acquires) {    final Thread current = Thread.currentThread();    int c = getState();    if (c == 0) {      //c=0时表示锁未被占用。这里是先判断队列中前面是否有别的线程。没有别的线程时,才进行CAS操作。      //公平锁之所以公平,正是因为这里。它发现锁未被占用时,首先判断等待队列中是否有别的线程已经在等待了。      //而非公平锁,发现锁未被占用时,根本不管队列中的排队情况,上来就抢。      if (!hasQueuedPredecessors() &&          compareAndSetState(0, acquires)) {        setExclusiveOwnerThread(current);        return true;      }    }    else if (current == getExclusiveOwnerThread()) {      int nextc = c + acquires;      if (nextc < 0)        throw new Error("Maximum lock count exceeded");      setState(nextc);      return true;    }    return false;  }  /**   * Acquires in exclusive uninterruptible mode for thread already in   * queue. Used by condition wait methods as well as acquire.   * 当抢锁失败时,先执行addWaiter(Node.EXCLUSIVE),将当前线程加入等待队列,再执行该方法。   * 该方法的作用是中断当前线程,并进行检查,知道当前线程是队列中的第一个线程,并且抢锁成功时,   * 该方法返回。   * @param node the node   * @param arg the acquire argument   * @return {@code true} if interrupted while waiting   **/  final boolean acquireQueued(final Node node, int arg) {    boolean failed = true;    try {      boolean interrupted = false;      for (;;) {        final Node p = node.predecessor();        if (p == head && tryAcquire(arg)) {          setHead(node);          p.next = null; // help GC          failed = false;          return interrupted;        }        if (shouldParkAfterFailedAcquire(p, node) &&            parkAndCheckInterrupt())          interrupted = true;      }    } finally {      if (failed)        cancelAcquire(node);    }  }

接下来是tryLock方法。代码如下。从注释中我们可以理解到,只有当调用tryLock时锁没有被别的线程占用,tryLock才会获取锁。如果锁没有被另一个线程占用,那么就获取锁,并立刻返回true,并把锁计数设置为1. 甚至在锁被设置为公平排序的情况下,若果锁可用,调用tryLock会立刻获取锁,而不管有没有别的线程在等待锁了。从这里我们总结出,不管可重入锁是公平锁还是非公平锁,tryLock方法只会是非公平的。

/**   * Acquires the lock only if it is not held by another thread at the time   * of invocation.   * <p>Acquires the lock if it is not held by another thread and   * returns immediately with the value {@code true}, setting the   * lock hold count to one. Even when this lock has been set to use a   * fair ordering policy, a call to {@code tryLock()} <em>will</em>   * immediately acquire the lock if it is available, whether or not   * other threads are currently waiting for the lock.   * This "barging" behavior can be useful in certain   * circumstances, even though it breaks fairness. If you want to honor   * the fairness setting for this lock, then use   * {@link #tryLock(long, TimeUnit) tryLock(0, TimeUnit.SECONDS) }   * which is almost equivalent (it also detects interruption).   * <p>If the current thread already holds this lock then the hold   * count is incremented by one and the method returns {@code true}.   * <p>If the lock is held by another thread then this method will return   * immediately with the value {@code false}.   * @return {@code true} if the lock was free and was acquired by the   *     current thread, or the lock was already held by the current   *     thread; and {@code false} otherwise   **/  public boolean tryLock() {    return sync.nonfairTryAcquire(1);  }  public boolean tryLock(long timeout, TimeUnit unit)      throws InterruptedException {    return sync.tryAcquireNanos(1, unit.toNanos(timeout));  }

接下来是释放锁的方法unlock。代码如下。unlock方式的实现,是以参数1来调用sync.release方法。而release方法是如何实现的呢?release方法首先会调用tryRelease方法,如果tryRelease成功,则唤醒后继者线程。而tryRelease的实现过程十分清晰,首先获取锁状态,锁状态减去参数(放锁次数),得到新状态。然后判断持有锁的线程是否为当前线程,如果不是当前线程,则抛出IllegalMonitorStateException。然后判断,如果新状态为0,说明放锁成功,则把持有锁的线程设置为null,并返回true。如果新状态不为0,则返回false。从tryRelease的返回值来看,它返回的true或false,指的是否成功的释放了该锁。成功的释放该锁的意思是彻底释放锁,别的线程就可以获取锁了。这里要认识到,即便tryRelease返回false,它也只是说明了锁没有完全释放,本次调用的这个释放次数值,依然是释放成功的。

  /**   * Attempts to release this lock.   * <p>If the current thread is the holder of this lock then the hold   * count is decremented. If the hold count is now zero then the lock   * is released. If the current thread is not the holder of this   * lock then {@link IllegalMonitorStateException} is thrown.   * @throws IllegalMonitorStateException if the current thread does not   *     hold this lock   **/  public void unlock() {    sync.release(1);  }  /**   * Releases in exclusive mode. Implemented by unblocking one or   * more threads if {@link #tryRelease} returns true.   * This method can be used to implement method {@link Lock#unlock}.   * @param arg the release argument. This value is conveyed to   *    {@link #tryRelease} but is otherwise uninterpreted and   *    can represent anything you like.   * @return the value returned from {@link #tryRelease}   **/  public final boolean release(int arg) {    if (tryRelease(arg)) {      Node h = head;      if (h != null && h.waitStatus != 0)        unparkSuccessor(h);      return true;    }    return false;  }  protected final boolean tryRelease(int releases) {      int c = getState() - releases;      if (Thread.currentThread() != getExclusiveOwnerThread())        throw new IllegalMonitorStateException();      boolean free = false;      if (c == 0) {        free = true;        setExclusiveOwnerThread(null);      }      setState(c);      return free;    }  /**   * Wakes up node's successor, if one exists.   * @param node the node   **/  private void unparkSuccessor(Node node) {    /**     * If status is negative (i.e., possibly needing signal) try     * to clear in anticipation of signalling. It is OK if this     * fails or if status is changed by waiting thread.     **/    int ws = node.waitStatus;    if (ws < 0)      compareAndSetWaitStatus(node, ws, 0);    /**     * Thread to unpark is held in successor, which is normally     * just the next node. But if cancelled or apparently null,     * traverse backwards from tail to find the actual     * non-cancelled successor.     **/    Node s = node.next;    if (s == null || s.waitStatus > 0) {      s = null;      for (Node t = tail; t != null && t != node; t = t.prev)        if (t.waitStatus <= 0)          s = t;    }    if (s != null)      LockSupport.unpark(s.thread);  }

接下来是newCondition方法。关于Condition这里不展开介绍,只是了解下该方法的作用。如下图。该方法返回一个和这个锁实例一起使用的Condition实例。返回的Condition实例支持和Object的监控方法例如wait-notify和notifyAll相同的用法。

  • 1,如果没有获取锁,调用Condition的await,signal,signalAll方法的任何一个时,会抛出IllegalMonitorStateException异常。
  • 2,调用Condition的await方法时,锁也会释放,在await返回之前,锁会被重新获取,并且锁计数会恢复到调用await方法时的值。
  • 3,如果一个线程在等待的过程中被中断了,那么等待就会结束,并抛出InterruptedException异常,线程的中断标志位会被清理。
  • 4,等待的线程以FIFO的顺序被唤醒。
  • 5,从await方法返回的线程们的获取到锁的顺序,和线程最开始获取锁的顺序相同,这是未指定情况下的默认实现。但是,公平锁更钟爱那些已经等待了最长时间的线程。
  /**   * Returns a {@link Condition} instance for use with this   * {@link Lock} instance.   * <p>The returned {@link Condition} instance supports the same   * usages as do the {@link Object} monitor methods ({@link   * Object#wait() wait}, {@link Object#notify notify}, and {@link   * Object#notifyAll notifyAll}) when used with the built-in   * monitor lock.   * <ul>   * <li>If this lock is not held when any of the {@link Condition}   * {@linkplain Condition#await() waiting} or {@linkplain   * Condition#signal signalling} methods are called, then an {@link   * IllegalMonitorStateException} is thrown.   * <li>When the condition {@linkplain Condition#await() waiting}   * methods are called the lock is released and, before they   * return, the lock is reacquired and the lock hold count restored   * to what it was when the method was called.   * <li>If a thread is {@linkplain Thread#interrupt interrupted}   * while waiting then the wait will terminate, an {@link   * InterruptedException} will be thrown, and the thread's   * interrupted status will be cleared.   * <li> Waiting threads are signalled in FIFO order.   * <li>The ordering of lock reacquisition for threads returning   * from waiting methods is the same as for threads initially   * acquiring the lock, which is in the default case not specified,   * but for <em>fair</em> locks favors those threads that have been   * waiting the longest.   * </ul>   * @return the Condition object   **/  public Condition newCondition() {    return sync.newCondition();  }

可重入锁还有一些其他的方法,这里就不一一介绍了。This is the end.

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对武林网的支持。如果你想了解更多相关内容请查看下面相关链接

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表