首页 > 编程 > Java > 正文

Java集合系列之LinkedList源码分析

2019-11-26 10:14:07
字体:
来源:转载
供稿:网友

上篇我们分析了ArrayList的底层实现,知道了ArrayList底层是基于数组实现的,因此具有查找修改快而插入删除慢的特点。本篇介绍的LinkedList是List接口的另一种实现,它的底层是基于双向链表实现的,因此它具有插入删除快而查找修改慢的特点,此外,通过对双向链表的操作还可以实现队列和栈的功能。LinkedList的底层结构如下图所示。

F表示头结点引用,L表示尾结点引用,链表的每个结点都有三个元素,分别是前继结点引用(P),结点元素的值(E),后继结点的引用(N)。结点由内部类Node表示,我们看看它的内部结构。

//结点内部类private static class Node<E> {  E item;     //元素  Node<E> next;  //下一个节点  Node<E> prev;  //上一个节点  Node(Node<E> prev, E element, Node<E> next) {    this.item = element;    this.next = next;    this.prev = prev;  }}

Node这个内部类其实很简单,只有三个成员变量和一个构造器,item表示结点的值,next为下一个结点的引用,prev为上一个结点的引用,通过构造器传入这三个值。接下来再看看LinkedList的成员变量和构造器。

//集合元素个数transient int size = 0;//头结点引用transient Node<E> first;//尾节点引用transient Node<E> last;//无参构造器public LinkedList() {}//传入外部集合的构造器public LinkedList(Collection<? extends E> c) {  this();  addAll(c);}

LinkedList持有头结点的引用和尾结点的引用,它有两个构造器,一个是无参构造器,一个是传入外部集合的构造器。与ArrayList不同的是LinkedList没有指定初始大小的构造器。看看它的增删改查方法。

//增(添加)public boolean add(E e) {  //在链表尾部添加  linkLast(e);  return true;}//增(插入)public void add(int index, E element) {  checkPositionIndex(index);  if (index == size) {    //在链表尾部添加    linkLast(element);  } else {    //在链表中部插入    linkBefore(element, node(index));  }}//删(给定下标)public E remove(int index) {  //检查下标是否合法  checkElementIndex(index);  return unlink(node(index));}//删(给定元素)public boolean remove(Object o) {  if (o == null) {    for (Node<E> x = first; x != null; x = x.next) {      if (x.item == null) {        unlink(x);        return true;      }    }  } else {    //遍历链表    for (Node<E> x = first; x != null; x = x.next) {      if (o.equals(x.item)) {        //找到了就删除        unlink(x);        return true;      }    }  }  return false;}//改public E set(int index, E element) {  //检查下标是否合法  checkElementIndex(index);  //获取指定下标的结点引用  Node<E> x = node(index);  //获取指定下标结点的值  E oldVal = x.item;  //将结点元素设置为新的值  x.item = element;  //返回之前的值  return oldVal;}//查public E get(int index) {  //检查下标是否合法  checkElementIndex(index);  //返回指定下标的结点的值  return node(index).item;}

LinkedList的添加元素的方法主要是调用linkLast和linkBefore两个方法,linkLast方法是在链表后面链接一个元素,linkBefore方法是在链表中间插入一个元素。LinkedList的删除方法通过调用unlink方法将某个元素从链表中移除。下面我们看看链表的插入和删除操作的核心代码。

//链接到指定结点之前void linkBefore(E e, Node<E> succ) {  //获取给定结点的上一个结点引用  final Node<E> pred = succ.prev;  //创建新结点, 新结点的上一个结点引用指向给定结点的上一个结点  //新结点的下一个结点的引用指向给定的结点  final Node<E> newNode = new Node<>(pred, e, succ);  //将给定结点的上一个结点引用指向新结点  succ.prev = newNode;  //如果给定结点的上一个结点为空, 表明给定结点为头结点  if (pred == null) {    //将头结点引用指向新结点    first = newNode;  } else {    //否则, 将给定结点的上一个结点的下一个结点引用指向新结点    pred.next = newNode;  }  //集合元素个数加一  size++;  //修改次数加一  modCount++;}//卸载指定结点E unlink(Node<E> x) {  //获取给定结点的元素  final E element = x.item;  //获取给定结点的下一个结点的引用  final Node<E> next = x.next;  //获取给定结点的上一个结点的引用  final Node<E> prev = x.prev;  //如果给定结点的上一个结点为空, 说明给定结点为头结点  if (prev == null) {    //将头结点引用指向给定结点的下一个结点    first = next;  } else {    //将上一个结点的后继结点引用指向给定结点的后继结点    prev.next = next;    //将给定结点的上一个结点置空    x.prev = null;  }  //如果给定结点的下一个结点为空, 说明给定结点为尾结点  if (next == null) {    //将尾结点引用指向给定结点的上一个结点    last = prev;  } else {    //将下一个结点的前继结点引用指向给定结点的前继结点    next.prev = prev;    x.next = null;  }  //将给定结点的元素置空  x.item = null;  //集合元素个数减一  size--;  //修改次数加一  modCount++;  return element;}

linkBefore和unlink是具有代表性的链接结点和卸载结点的操作,其他的链接和卸载两端结点的方法与此类似,所以我们重点介绍linkBefore和unlink方法。

linkBefore方法的过程图:

unlink方法的过程图:

通过上面图示看到对链表的插入和删除操作的时间复杂度都是O(1),而对链表的查找和修改操作都需要遍历链表进行元素的定位,这两个操作都是调用的node(int index)方法定位元素,看看它是怎样通过下标来定位元素的。

//根据指定位置获取结点Node<E> node(int index) {  //如果下标在链表前半部分, 就从头开始查起  if (index < (size >> 1)) {    Node<E> x = first;    for (int i = 0; i < index; i++) {      x = x.next;    }    return x;  } else {    //如果下标在链表后半部分, 就从尾开始查起    Node<E> x = last;    for (int i = size - 1; i > index; i--) {      x = x.prev;    }    return x;  }}

通过下标定位时先判断是在链表的上半部分还是下半部分,如果是在上半部分就从头开始找起,如果是下半部分就从尾开始找起,因此通过下标的查找和修改操作的时间复杂度是O(n/2)。通过对双向链表的操作还可以实现单项队列,双向队列和栈的功能。

单向队列操作:

//获取头结点public E peek() {  final Node<E> f = first;  return (f == null) ? null : f.item;}//获取头结点public E element() {  return getFirst();}//弹出头结点public E poll() {  final Node<E> f = first;  return (f == null) ? null : unlinkFirst(f);}//移除头结点public E remove() {  return removeFirst();}//在队列尾部添加结点public boolean offer(E e) {  return add(e);}

双向队列操作:

//在头部添加public boolean offerFirst(E e) {  addFirst(e);  return true;}//在尾部添加public boolean offerLast(E e) {  addLast(e);  return true;}//获取头结点public E peekFirst() {  final Node<E> f = first;  return (f == null) ? null : f.item; }//获取尾结点public E peekLast() {  final Node<E> l = last;  return (l == null) ? null : l.item;}

栈操作:

//入栈public void push(E e) {  addFirst(e);}//出栈public E pop() {  return removeFirst();}

不管是单向队列还是双向队列还是栈,其实都是对链表的头结点和尾结点进行操作,它们的实现都是基于addFirst(),addLast(),removeFirst(),removeLast()这四个方法,它们的操作和linkBefore()和unlink()类似,只不过一个是对链表两端操作,一个是对链表中间操作。可以说这四个方法都是linkBefore()和unlink()方法的特殊情况,因此不难理解它们的内部实现,在此不多做介绍。到这里,我们对LinkedList的分析也即将结束,对全文中的重点做个总结:
1. LinkedList是基于双向链表实现的,不论是增删改查方法还是队列和栈的实现,都可通过操作结点实现
2. LinkedList无需提前指定容量,因为基于链表操作,集合的容量随着元素的加入自动增加
3. LinkedList删除元素后集合占用的内存自动缩小,无需像ArrayList一样调用trimToSize()方法
4. LinkedList的所有方法没有进行同步,因此它也不是线程安全的,应该避免在多线程环境下使用
5. 以上分析基于JDK1.7,其他版本会有些出入,因此不能一概而论。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持武林网。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表